小编Ama*_*nar的帖子

Keras 1D CNN:如何正确指定尺寸?

所以,我想做的就是使用这里获得的开普勒数据对系外行星和非系外行星进行分类。数据类型是时间序列,其维数为(num_of_samples,3197)。我发现可以通过在Keras中使用1D卷积层来完成。但是我不断弄乱尺寸并得到以下错误

检查模型输入时出错:预期conv1d_1_input具有形状(None,3197,1),但数组的形状为(1,570,3197)

因此,问题是:

1.是否需要将数据(training_set和test_set)转换为3D张量?如果是,正确的尺寸是多少?

2.正确的输入形状是什么?我知道我有1197个功能的3197个时间步长,但是文档没有指定它们是使用TF还是theano后端,所以我仍然很头疼。

顺便说一句,我正在使用TF后端。任何帮助将不胜感激!谢谢!

"""
Created on Wed May 17 18:23:31 2017

@author: Amajid Sinar
"""

import matplotlib.pyplot as plt
import pandas as pd
plt.style.use("ggplot")
import numpy as np

#Importing training set
training_set = pd.read_csv("exoTrain.csv")
X_train = training_set.iloc[:,1:].values
y_train = training_set.iloc[:,0:1].values

#Importing test set
test_set = pd.read_csv("exoTest.csv")
X_test = test_set.iloc[:,1:].values
y_test = test_set.iloc[:,0:1].values

#Scale the data
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)

#Convert data into …
Run Code Online (Sandbox Code Playgroud)

convolution deep-learning keras

5
推荐指数
1
解决办法
3097
查看次数

Keras:用于超参数调整的GridSearchCV

我目前正在训练CNN以对波浪进行分类。虽然代码可以完美运行,但是用于超参数调整的GridSearchCV并未按预期工作。我很困惑,因为我在MLP中使用了类似的代码来调整超参数,并且它的工作原理很吸引人。这是完整的代码,顺便说一下,我使用TF作为后端。

import pandas as pd
import numpy as np

#Import training set
training_set = pd.read_csv("training_set.csv", delimiter=";")
X_train = training_set.iloc[:,1:].values
y_train = training_set.iloc[:,0:1].values

#Import test set
test_set = pd.read_csv("test_set_v2.csv", delimiter=";")
X_test = test_set.iloc[:,1:].values
y_test = test_set.iloc[:,0:1].values

from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.fit_transform(X_test)

#Convert X into 3D tensor
X_train = np.reshape(X_train,(X_train.shape[0],X_train.shape[1],1))
X_test = np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))

#Importing the CNN libraries
from keras.models import Sequential
from keras.layers import Conv1D,MaxPooling1D,Flatten
from keras.layers import Dropout,Dense
from keras.layers.normalization import BatchNormalization

#Parameter …
Run Code Online (Sandbox Code Playgroud)

python deep-learning keras tensorflow

5
推荐指数
1
解决办法
3666
查看次数

标签 统计

deep-learning ×2

keras ×2

convolution ×1

python ×1

tensorflow ×1