当我使用 fast.ai 运行训练时,仅使用 CPU,即使
import torch; print(torch.cuda.is_available())
Run Code Online (Sandbox Code Playgroud)
显示 CUDA 可用,并且 GPU 上的一些内存被我的训练过程占用。
from main import DefectsImagesDataset
from fastai.vision.all import *
import numpy as np
NUM_ELEMENTS = 1e5
CSV_FILES = {
'events_path':
'./data/events.csv',
'defects_path':
'./data/defects2020_all.csv',
}
defects_dataset = DefectsImagesDataset(CSV_FILES['defects_path'], CSV_FILES['events_path'], NUM_ELEMENTS, window_size=10000)
model = models.resnet34
BATCH_SIZE = 16
NUMBER_WORKERS = 8
dls = DataLoaders.from_dsets(defects_dataset, defects_dataset, bs=BATCH_SIZE, num_workers=NUMBER_WORKERS)
import torch; print(torch.cuda.is_available())
loss_func = nn.CrossEntropyLoss()
learn = cnn_learner(dls, models.resnet34, metrics=error_rate, n_out=30, loss_func=loss_func)
learn.fit_one_cycle(1)
Run Code Online (Sandbox Code Playgroud)
CUDA 版本:11.5
Fast.ai-版本:2.5.3
如何让 fast.ai 使用 GPU?
我的Keras模型没有学习任何东西,我无法弄清楚原因.我甚至将训练集大小减少到5个元素,并且模型仍然不适合训练数据.
这是我的代码:
model = Sequential()
model.add(Conv1D(30, filter_length=3, activation='relu', input_shape=(50, 1)))
model.add(Conv1D(40, filter_length=(3), activation='relu'))
model.add(Conv1D(120, filter_length=(3), activation='relu'))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='relu'))
model.summary()
model.compile(loss='mse',
optimizer=keras.optimizers.adam())
train_limit = 5
batch_size = 4096
tb = keras.callbacks.TensorBoard(log_dir='./logs/' + run_name + '/',
histogram_freq=0, write_images=False)
tb.set_model(model)
model.fit(X_train[:train_limit], y_train[:train_limit],
batch_size=batch_size,
nb_epoch=10**4,
verbose=0,
validation_data=(X_val[:train_limit], y_val[:train_limit]),
callbacks=[tb])
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score)
print('Test accuracy:', score)
Run Code Online (Sandbox Code Playgroud)
任何帮助是极大的赞赏!
我正在尝试训练这个卷积神经网络,但无法弄清楚我的最后一层是什么问题.
model = Sequential()
model.add(Conv1D(50, kernel_size=(1),
activation='relu',
input_dim=50))
model.add(Dense(32))
model.add(Dense(1))
model.summary()
model.compile(loss=keras.losses.mean_squared_error,
optimizer=keras.optimizers.adam())
model.fit(X_train, y_train,
batch_size=940,
epochs=10,
verbose=1,
validation_data=(X_test, y_test))
Run Code Online (Sandbox Code Playgroud)
模型:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_26 (Conv1D) (None, None, 50) 2550
_________________________________________________________________
dense_38 (Dense) (None, None, 32) 1632
_________________________________________________________________
dense_39 (Dense) (None, None, 1) 33
=================================================================
Total params: 4,215.0
Trainable params: 4,215
Non-trainable params: 0.0
_________________________________________________________________
Run Code Online (Sandbox Code Playgroud)
我总是收到以下错误消息:
ValueError:检查模型目标时出错:期望dense_39有3个维度,但得到的数组有形状(940,1)
我怀疑问题是,对于最后一层,我只有一个输出节点,因此输出尺寸减少到两个.