小编cha*_*eno的帖子

Python列表/字典与numpy数组:性能与内存控制

我必须迭代地读取数据文件并将数据存储到(numpy)数组中.我选择将数据存储到"数据字段"字典中:{'field1':array1,'field2':array2,...}.

案例1(清单):

使用list(或collections.deque())来"追加"新数据数组,代码是高效的.但是,当我连接存储在列表中的数组时,内存会增长,而我却无法再次释放它.例:

filename = 'test'
# data file with a matrix of shape (98, 56)
nFields = 56
# Initialize data dictionary and list of fields
dataDict = {}

# data directory: each entry contains a list 
field_names = []
for i in xrange(nFields):
    field_names.append(repr(i))
    dataDict[repr(i)] = []

# Read a data file N times (it represents N files reading)
# file contains 56 fields of arbitrary length in the example …
Run Code Online (Sandbox Code Playgroud)

python performance memory-management

8
推荐指数
1
解决办法
1万
查看次数

标签 统计

memory-management ×1

performance ×1

python ×1