我正在尝试将元组列表列表转换为 pandas 数据框,但不知道如何执行此操作。我的地址结构如下:
addresses = [
[('the vicars inn', 'house'), ('68', 'house_number'), ('church lane', 'road'), ('arlesey', 'city'), ('beds', 'house')],
[('the old oak', 'house'), ('85', 'house_number'), ('church lane', 'road'), ('arlesey', 'city'), ('beds', 'house')],
[('adj', 'road'), ('85', 'house_number'), ('high street', 'road'), ('arlesey', 'city'), ('beds', 'house')],
[('arlesey community centre', 'house'), ('high street', 'road'), ('arlesey', 'city'), ('beds', 'house')],
[('arlesey community centre', 'house'), ('high street', 'road'), ('arlesey', 'city'), ('beds', 'house')]
]
Run Code Online (Sandbox Code Playgroud)
理想情况下,我需要返回一个数据框,例如:
city house house_number road
0 arlesey the vicars inn 68 church lane
1 …Run Code Online (Sandbox Code Playgroud) 我正在尝试只允许管理员用户在我的laravel项目中查看导航栏的某些内容.我有一个users包含"admin"和"user"值的角色列的表,我在中间件中使用这些值,以允许管理员用户访问CRUD操作的管理面板.
我试过了:
@if(auth()->check())
@if(Auth::user()->get(array('users.role')) == 'admin')
'THIS IS WHAT I WANT ONLY ADMIN USERS TO SEE!'
@endif
@endif
Run Code Online (Sandbox Code Playgroud)
然而,当登录到"管理员"用户时,我仍然看不到仅限管理员的内容.我对这个框架很新,但如果有人有任何建议我会非常感激!
谢谢,
山姆
我是ggplot绘图库的新手,R无法弄清楚如何增加图例的大小。我知道您可以使用轴操作,theme(axis...)但我找不到要传递的正确参数!
我用来生成图形的代码在这里:
library(ggplot)
library(ggalluvial)
ggplot(data = wrong_cases_all,
aes(axis1 = cae, axis2 = places,
y = freq)) +
scale_x_discrete(limits = c("CAE", "VGG16-Places365"))+
xlab("Model") +
geom_alluvium(aes(fill = freq)) +
geom_stratum() + geom_text(stat = "stratum", label.strata = TRUE) +
theme_minimal()
Run Code Online (Sandbox Code Playgroud)
有人有任何提示吗?
示例数据:
wrong_cases_all <- read.table(header=TRUE, text = "cae places freq
1 0 0 19462
2 0 1 23625
3 0 2 14431
4 0 3 9767
5 0 4 14025
6 1 0 8696
7 1 1 …Run Code Online (Sandbox Code Playgroud) 为什么这个优先级队列无法堆化?其中 (150, 200, 200) 是分配给字典的优先级值
import heapq
priority_q = [
(150, {'intel-labels': {'timestamp': 150}}),
(200, {'intel-labels': {'timestamp': 200}}),
(200, {'intel-labels': {'timestamp': 200, 'xx': 'xx'}})
]
heapq.heapify(priority_q)
print( heapq.nlargest(2, priority_q))
Run Code Online (Sandbox Code Playgroud)
例外情况:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'dict' and 'dict'
Run Code Online (Sandbox Code Playgroud)
然而,下面的工作原理..
priority_q = [
(150, {'intel-labels': {'timestamp': 150}}),
(200, {'intel-labels': {'timestamp': 200}}),
(201, {'intel-labels': {'timestamp': 200, 'xx': 'xx'}})
]
heapq.heapify(priority_q)
Run Code Online (Sandbox Code Playgroud)
为什么是这样?
我正在尝试使用通配符提取 JSON 中包含的数组内的 ID (5384)。我遇到的问题是 ID 的位置对于该数组中的每个元素都没有固定位置。该数组中的 JSON 示例如下(其中“id”:5384 可以占据不同的索引位置):
{
"id":7465115,
"name":"BCA_WS_FBX_Nielsen PRIZM_Test_Unlock_1x1",
"advertiser_id":155085,
"pixels":[
{
"id":416491,
"pixel_template_id":null,
},
{
"id":5384,
"pixel_template_id":null,
}
]
}
Run Code Online (Sandbox Code Playgroud)
我的查询如下:
SELECT id, json FROM PROD_APPNEXUS.dimension_json_creatives
WHERE JSON LIKE ('%pixels%_%"id":5384,%') AND MEMBER_ID = 364
Run Code Online (Sandbox Code Playgroud)
我试图仅提取像素数组中且 ID 为 5384 的项目。
任何有关如何实现这一目标的评论都将受到高度重视,谢谢!
更新:MySQL 版本 5.6.17
山姆
我使用整数编码来表示numpy数组中的类别。但是,我无法弄清楚如何为每个类别抽取 1 个随机样本并返回索引值。
例如,我有一个数组,如:
np.array([2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 0, 1, 0, 0, 2, 2, 1])
Run Code Online (Sandbox Code Playgroud)
我将如何随机抽取 0、1 和 2 并返回每个样本的索引?
我正在尝试计算 Pyspark 数据框中两个 ArrayType 列之间的按元素乘积。我尝试使用下面的方法来实现这一点,但似乎无法得到正确的结果......
from pyspark.sql import functions as F
data.withColumn("array_product", F.expr("transform(CASUAL_TOPS_SIMILARITY_SCORE, (x, PER_UNA_SIMILARITY_SCORE) -> x * PER_UNA_SIMILARITY_SCORE)"))
Run Code Online (Sandbox Code Playgroud)
有人对我如何在这里获得正确的结果有任何提示吗?我在下面的 DataFrame 中附加了一个测试行...我需要将列CASUAL_TOPS_SIMILARITY_SCORE与PER_UNA_SIMILARITY_SCORE
import json
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local").appName("test").getOrCreate()
js = '{"PER_UNA_SIMILARITY_SCORE":{"category_list":[0.9736891648,0.9242207186,0.9717901106,0.9763716155,0.9440944231,0.9708032326,0.9599383329,0.9705343027,0.804267581,0.9597317177,0.9316773281,0.8076725314,0.9555369889,0.9753550725,0.9811865431,1.0,0.8231541809,0.9738989392,0.9780283991,0.9644088011,0.9798529418,0.9347357116,0.9727502648,0.9778486916,0.8621780792,0.9735844196,0.9582644436,0.9579092722,0.8890027888,0.9394986243,0.9563411605,0.9811867597,0.9738380108,0.9577698381,0.7912932623,0.9778158279]},"CASUAL_TOPS_SIMILARITY_SCORE":{"category_list":[0.7924168764,0.7511316884,0.7925161719,0.8007234107,0.7953468064,0.7882556409,0.7778519374,0.7881058994,1.0,0.7785517364,0.7733458123,0.7426205538,0.7905195275,0.7925983778,0.7983386701,0.804267581,0.6749185095,0.7924821952,0.8016348085,0.7895650508,0.7985721918,0.772656847,0.7897495222,0.7948759958,0.6996340275,0.8024327668,0.7784598142,0.7942396044,0.7159431296,0.7850145414,0.7768001023,0.7983372946,0.7971616495,0.7927845035,0.6462844274,0.799555357]}}'
a_json = json.loads(js)
data = spark.createDataFrame(pd.DataFrame.from_dict(a_json))
Run Code Online (Sandbox Code Playgroud)