我是Spark 2的新手。我尝试过Spark tfidf示例
sentenceData = spark.createDataFrame([
(0.0, "Hi I heard about Spark")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsData = tokenizer.transform(sentenceData)
hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=32)
featurizedData = hashingTF.transform(wordsData)
for each in featurizedData.collect():
print(each)
Run Code Online (Sandbox Code Playgroud)
它输出
Row(label=0.0, sentence=u'Hi I heard about Spark', words=[u'hi', u'i', u'heard', u'about', u'spark'], rawFeatures=SparseVector(32, {1: 3.0, 13: 1.0, 24: 1.0}))
Run Code Online (Sandbox Code Playgroud)
我希望rawFeatures我能得到像这样的词频{0:0.2, 1:0.2, 2:0.2, 3:0.2, 4:0.2}。因为术语频率是:
tf(w) = (Number of times the word appears in a document) / (Total number of words in …Run Code Online (Sandbox Code Playgroud) tf-idf apache-spark pyspark apache-spark-ml apache-spark-mllib