我正在尝试找到将整个Spark数据帧转换为scala Map集合的最佳解决方案.最好说明如下:
从这里开始(在Spark示例中):
val df = sqlContext.read.json("examples/src/main/resources/people.json")
df.show
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
Run Code Online (Sandbox Code Playgroud)
Scala集合(Map of Maps)代表如下:
val people = Map(
Map("age" -> null, "name" -> "Michael"),
Map("age" -> 30, "name" -> "Andy"),
Map("age" -> 19, "name" -> "Justin")
)
Run Code Online (Sandbox Code Playgroud) 尝试将 VectorAssembler 添加到 GBT 管道示例并得到管道无法找到 features 字段的错误。我引入了一个示例文件而不是 libsvm,所以我需要转换功能集集。
错误:线程“main”中的异常 java.lang.IllegalArgumentException:字段“features”不存在。
val df = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true")
.option("inferSchema", "true")
.load("data/training_example.csv")
val sampleDF = df.sample(false,0.05,987897L)
val assembler = new VectorAssembler()
.setInputCols(Array("val1","val2","val3",...,"valN"))
.setOutputCol("features")
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(sampleDF)
val featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(4)
.fit(sampleDF)
val Array(trainingData, testData) = sampleDF.randomSplit(Array(0.7, 0.3))
val gbt = new GBTClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures")
.setMaxIter(3)
.setMaxDepth(5)
val pipeline = new Pipeline()
.setStages(Array(assembler,labelIndexer,featureIndexer,gbt))
val model = pipeline.fit(trainingData)
val predictions = model.transform(testData)
predictions.show(10)
Run Code Online (Sandbox Code Playgroud)