小编DS *_*S R的帖子

为什么以下简单的并行化代码比Python中的简单循环慢得多?

一个简单的程序,用于计算数字平方并存储结果:

    import time
    from joblib import Parallel, delayed
    import multiprocessing

    array1 = [ 0 for i in range(100000) ]

    def myfun(i):
        return i**2

    #### Simple loop ####
    start_time = time.time()

    for i in range(100000):
        array1[i]=i**2

    print( "Time for simple loop         --- %s seconds ---" % (  time.time()
                                                               - start_time
                                                                 )
            )
    #### Parallelized loop ####
    start_time = time.time()
    results = Parallel( n_jobs  = -1,
                        verbose =  0,
                        backend = "threading"
                        )(
                        map( delayed( myfun ),
                             range( 100000 )
                             )
                        ) …
Run Code Online (Sandbox Code Playgroud)

python arrays parallel-processing function

5
推荐指数
2
解决办法
685
查看次数

标签 统计

arrays ×1

function ×1

parallel-processing ×1

python ×1