我尝试了 PyTorch 并想为 MNIST 编写一个程序。但是,我收到了错误消息:
预期输入 batch_size (12) 匹配目标 batch_size (64)
我搜索了一个解决方案,但我不明白我的代码有什么问题。
#kwargs is empty because I don't use cuda
kwargs = {}
train_data = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))])),
batch_size=64, shuffle=True, **kwargs)
test_data = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False,
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))])),
batch_size=64, shuffle=True, **kwargs)
class Netz(nn.Module):
def __init__(self):
super(Netz, self).__init__()
self.conv1 = nn.Conv2d(1,10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv_dropout = nn.Dropout2d()
self.fc1 = nn.Linear(320, 60)
self.fc2 = nn.Linear(60, 10)
def forward(self, x):
x = self.conv1(x)
x = F.max_pool2d(x, 2) …Run Code Online (Sandbox Code Playgroud) 回溯(最近一次调用最后一次):文件“AutoFC_AlexNet_randomsearch_CalTech101_v2.py”,第 112 行,X = rows.Dense(神经元,activation=activation,kernel_initializer=weight_init)(X)文件“/home/shabbeer/NAS/lib/python3 .5/site-packages/keras/legacy/interfaces.py”,第 91 行,在包装器中返回 func(*args, **kwargs) 文件“/home/shabbeer/NAS/lib/python3.5/site-packages/ keras/layers/core.py”,第 824 行,在init self.kernel_initializer =initializers.get(kernel_initializer) 文件“/home/shabbeer/NAS/lib/python3.5/site-packages/keras/initializers.py”中,第 503 行,在获取标识符中)ValueError: ('无法解释初始值设定项标识符:', 0.2)
使用tensorflow-gpu版本1.4.0和keras版本2.1.3运行代码时出现上述错误
我正在尝试训练 CNNFashion-MNIST使用Conv2d、Maxpool和Linear层对数据中的图像进行分类。我in_features = 12*4*4在nn.Linear层中遇到了如下所述的代码。
我能否获得有关如何in_features为 nn.Linear 层选择参数的帮助?
class Network(nn.Module):
def __init__(self):
super(Network, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)
self.fc1 = nn.Linear(in_features=12*4*4, out_features=120)
self.fc2 = nn.Linear(in_features=120, out_features=60)
self.out = nn.Linear(in_features=60, out_features=10)
Run Code Online (Sandbox Code Playgroud) 我想使用VGG模型(tensorflow或keras预训练模型)作为特征提取器;我加载VGG16 model:
IMG_SHAPE = (224, 224, 3)
vgg16 = tf.keras.applications.VGG16(input_shape = IMG_SHAPE,
include_top=False,
weights='imagenet')
Run Code Online (Sandbox Code Playgroud)
现在如果我有一批图像
image_batch =np.ones((5,224,224,3),np.float32)
Run Code Online (Sandbox Code Playgroud)
我可以通过以下方式获得 VGG16 的最后一层
last_layer = vgg16(image_batch)
Run Code Online (Sandbox Code Playgroud)
有谁知道在给定输入图像 image_batch 的情况下获取中间层特征?也就是说,我想提取给定图像的较低级别特征。非常感谢!
我有一组图像,所有这些图像看起来几乎都像这里的这片叶子:
我想从背景中提取叶子,为此我使用了此处GrabCut使用的算法。
作为一种不同的方法,我还使用基于 r、g 和 b 值比率的阈值,如下所示:
import numpy as np
import cv2
import matplotlib.pyplot as plt
testImg = cv2.imread('path_to_the_image')
testImg = cv2.resize(testImg, (256, 256))
#bgImg = cv2.imread('')
#blurBg = cv2.GaussianBlur(bgImg, (5, 5), 0)
#blurBg = cv2.resize(blurBg, (256, 256))
#testImg = cv2.GaussianBlur(testImg, (5, 5), 0)
cv2.imshow('testImg', testImg)
#plt.imshow(bgImg)
cv2.waitKey(0)
#plt.show()
modiImg = testImg.copy()
ht, wd = modiImg.shape[:2]
print(modiImg[0][0][0])
for i in range(ht):
for j in range(wd):
r = modiImg[i][j][0]
g = modiImg[i][j][1]
b = modiImg[i][j][2]
r1 = …Run Code Online (Sandbox Code Playgroud) python opencv image-processing python-3.x background-subtraction