小编Kaz*_*zan的帖子

Python中的简单线性回归

我正在尝试实现此算法以查找单个变量的截距和斜率:

线性回归的算法

这是我更新拦截和斜率的Python代码.但它并没有趋同.RSS随着迭代而不是减少而增加,并且在一些迭代之后它变得无限.我没有发现任何实现算法的错误.我怎么能解决这个问题?我也附上了csv文件.这是代码.

import pandas as pd
import numpy as np

#Defining gradient_decend
#This Function takes X value, Y value and vector of w0(intercept),w1(slope)
#INPUT FEATURES=X(sq.feet of house size)
#TARGET VALUE=Y (Price of House)
#W=np.array([w0,w1]).reshape(2,1)
#W=[w0,
#    w1]

def gradient_decend(X,Y,W):
    intercept=W[0][0]
    slope=W[1][0]

    #Here i will get a list
    #list is like this
    #gd=[sum(predicted_value-(intercept+slope*x)),
    #     sum(predicted_value-(intercept+slope*x)*x)]
    gd=[sum(y-(intercept+slope*x) for x,y in zip(X,Y)),
        sum(((y-(intercept+slope*x))*x) for x,y in zip(X,Y))]
    return np.array(gd).reshape(2,1)

#Defining Resudual sum of squares
def RSS(X,Y,W):
    return sum((y-(W[0][0]+W[1][0]*x))**2 for x,y in zip(X,Y))


#Reading …
Run Code Online (Sandbox Code Playgroud)

python numpy machine-learning linear-regression gradient-descent

22
推荐指数
2
解决办法
4831
查看次数