小编V. *_*Gai的帖子

在c ++中使用XGBOOST

如何在c ++中使用XGBOOST https://github.com/dmlc/xgboost/库?我已经创建了Python和Java API,但我找不到c ++的API

c++ xgboost

14
推荐指数
2
解决办法
1万
查看次数

OpenCV功能匹配多个对象

如何在一个图像上找到一种类型的多个对象.我使用ORB特征查找器和强力匹配器(opencv = 3.2.0).

我的源代码:

import numpy as np
import cv2
from matplotlib import pyplot as plt

MIN_MATCH_COUNT = 10

img1 = cv2.imread('box.png', 0)  # queryImage
img2 = cv2.imread('box1.png', 0) # trainImage

#img2 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)

# Initiate ORB detector
# 
orb = cv2.ORB_create(10000, 1.2, nlevels=9, edgeThreshold = 4)
#orb = cv2.ORB_create()

# find the keypoints and descriptors with SIFT
kp1, des1 = orb.detectAndCompute(img1, None)
kp2, des2 = orb.detectAndCompute(img2, None)

FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) …
Run Code Online (Sandbox Code Playgroud)

opencv image-processing computer-vision orb

5
推荐指数
1
解决办法
6163
查看次数

opencv findChessboardCorners 失败

我的 python 代码在图像上找不到棋盘。我使用此代码来解决此任务:

import numpy as np
import cv2
import glob

# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
a = 7
b = 6
objp = np.zeros((b*a,3), np.float32)
objp[:,:2] = np.mgrid[0:a,0:b].T.reshape(-1,2)

# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.

images = glob.glob('*.jpg')

for fname …
Run Code Online (Sandbox Code Playgroud)

opencv image-processing

2
推荐指数
1
解决办法
4904
查看次数

负决策函数值

我在 Iris 数据集上使用来自 sklearn 的支持向量分类器。当我调用 decision_function它时返回负值。但是分类后测试数据集中的所有样本都具有正确的类别。我认为当样本是内点时,decision_function 应该返回正值,如果样本是异常值,则应该返回负值。我错在哪里?

from sklearn import datasets
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
X = iris.data[:,:]
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, 
random_state=0)

clf = SVC(probability=True)
print(clf.fit(X_train,y_train).decision_function(X_test))
print(clf.predict(X_test))
print(y_test)
Run Code Online (Sandbox Code Playgroud)

这是输出:

[[-0.76231668 -1.03439531 -1.40331645]
 [-1.18273287 -0.64851109  1.50296097]
 [ 1.10803774  1.05572833  0.12956269]
 [-0.47070432 -1.08920859 -1.4647051 ]
 [ 1.18767563  1.12670665  0.21993744]
 [-0.48277866 -0.98796232 -1.83186272]
 [ 1.25020033  1.13721691  0.15514536]
 [-1.07351583 -0.84997114  0.82303659]
 [-1.04709616 -0.85739411  0.64601611]
 [-1.23148923 -0.69072989  1.67459938]
 [-0.77524787 …
Run Code Online (Sandbox Code Playgroud)

classification machine-learning svm scikit-learn

2
推荐指数
1
解决办法
3104
查看次数