我正在阅读CSV作为Spark DataFrame并在其上执行机器学习操作.我一直在获取Python序列化EOFError - 任何想法为什么?我认为这可能是一个内存问题 - 即文件超出可用RAM - 但是大幅减小DataFrame的大小并没有阻止EOF错误.
玩具代码和错误如下.
#set spark context
conf = SparkConf().setMaster("local").setAppName("MyApp")
sc = SparkContext(conf = conf)
sqlContext = SQLContext(sc)
#read in 500mb csv as DataFrame
df = sqlContext.read.format('com.databricks.spark.csv').options(header='true',
inferschema='true').load('myfile.csv')
#get dataframe into machine learning format
r_formula = RFormula(formula = "outcome ~ .")
mldf = r_formula.fit(df).transform(df)
#fit random forest model
rf = RandomForestClassifier(numTrees = 3, maxDepth = 2)
model = rf.fit(mldf)
result = model.transform(mldf).head()
Run Code Online (Sandbox Code Playgroud)
spark-submit在单个节点上运行上述代码会重复抛出以下错误,即使在拟合模型之前减小了DataFrame的大小(例如tinydf = df.sample(False, 0.00001):
Traceback (most recent call last):
File …Run Code Online (Sandbox Code Playgroud)