这个问题在某种程度上是一个扩展我如何使用从TFRecords读取的值作为tf.reshape的参数?
我使用以下代码将图像转换为特定形状:
height = tf.cast(features['height'],tf.int32)
width = tf.cast(features['width'],tf.int32)
image = tf.reshape(image,tf.pack([height, width, 3]))
Run Code Online (Sandbox Code Playgroud)
在cifar10_input代码中,图像随后被扭曲,其中IMAGE_SIZE = 32:
height = IMAGE_SIZE
width = IMAGE_SIZE
distorted_image = tf.random_crop(image, [height, width, 3])
Run Code Online (Sandbox Code Playgroud)
但是,就我的目的而言,我现在不需要随机播种.因此,我用以下内容替换了该行:
distorted_image = image
Run Code Online (Sandbox Code Playgroud)
当我这样做时,它会抛出以下错误:
Traceback (most recent call last):
File "cnn_train.py", line 128, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/default/_app.py", line 30, in run
sys.exit(main(sys.argv))
File "cnn_train.py", line 124, in main
train()
File "cnn_train.py", line 56, in train
images, labels = cnn.distorted_inputs()
File "/home/samuelchin/tensorflow/my_code/CNN/cnn.py", line 123, in distorted_inputs
batch_size=BATCH_SIZE)
File "/home/samuelchin/tensorflow/my_code/CNN/cnn_input.py", line …Run Code Online (Sandbox Code Playgroud) 我想从源代码安装最新的TensorFlow.我拉了存储库,然后跑了
bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
我收到了这个错误:
ERROR: /home/samuelchin/tensorflow/tensorflow/models/embedding/BUILD:10:6: First argument of load() is a path, not a label. It should start with a single slash if it is an absolute path.
ERROR: /home/samuelchin/tensorflow/tensorflow/models/embedding/BUILD:10:6: file '/tensorflow:tensorflow.bzl.bzl' was not correctly loaded. Make sure the 'load' statement appears in the global scope in your file.
ERROR: /home/samuelchin/tensorflow/tensorflow/models/embedding/BUILD:104:1: name 'tf_gen_op_wrapper_py' is not defined.
ERROR: /home/samuelchin/tensorflow/tensorflow/tools/pip_package/BUILD:13:1: Target '//tensorflow/models/embedding:package' contains an error and its package is in error and referenced by '//tensorflow/tools/pip_package:build_pip_package'.
ERROR: Loading failed; …Run Code Online (Sandbox Code Playgroud) 给定张量,我想使用此函数获取0D字符串,然后将其写为“ sample.jpg”。
这可以通过OpenCV或Python PIL轻松实现,但我希望尽可能将所有内容保留在TF中。
我想从 Tensorflow 对象检测 API 训练一个 ssd-inception-v2 模型。我想使用的训练数据集是一堆不同大小的裁剪图像,没有边界框,因为裁剪本身就是边界框。
我按照 create_pascal_tf_record.py 示例相应地替换了边界框和分类部分以生成 TFRecords,如下所示:
def dict_to_tf_example(imagepath, label):
image = Image.open(imagepath)
if image.format != 'JPEG':
print("Skipping file: " + imagepath)
return
img = np.array(image)
with tf.gfile.GFile(imagepath, 'rb') as fid:
encoded_jpg = fid.read()
# The reason to store image sizes was demonstrated
# in the previous example -- we have to know sizes
# of images to later read raw serialized string,
# convert to 1d array and convert to respective
# shape that image …Run Code Online (Sandbox Code Playgroud) image-processing computer-vision deep-learning conv-neural-network tensorflow