我正在阅读Luna的DirectX 11 3D游戏编程简介.总是为Linux命令行编程,我决定先阅读附录A,一个win32编程入门,我不明白CreateWindow的某些行为( )功能.它的第一个参数是你想要创建的窗口类的名称 - 所以你首先必须声明一个窗口类,然后"注册"它(我假设这意味着将类添加到神秘的win32 API中的某个类堆栈中),然后将窗口类的lpszClassName成员传递给函数,如下所示:
WNDCLASS wc;
//set all the various members of wc
wc.lpszClassName = L"BasicWndClass";
RegisterClass(&wc);
ghMainWindow = CreateWindow(L"BasicWndClass", L"LOL", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, 0, 0, instanceHandle, 0);
Run Code Online (Sandbox Code Playgroud)
我不明白为什么最后一行不是那样的
ghMainWindow = CreateWindow(&wc, L"LOL", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, 0, 0, instanceHandle, 0);
Run Code Online (Sandbox Code Playgroud)
是否有一些我不知道的历史或实践原因?
编辑:此外,做这样的事情是不好的做法?
ghMainWindow = CreateWindow(wc.lpszClassName, L"LOL", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, 0, 0, instanceHandle, 0);
Run Code Online (Sandbox Code Playgroud) TensorRT的官方文档列出了两种将 TensorFlow SavedModel 转换为 TensorRT SavedModel 的方法:第一种是
from tensorflow.python.compiler.tensorrt import trt_convert as trt
converter = trt.TrtGraphConverterV2(input_saved_model_dir=input_saved_model_dir)
converter.convert()
converter.save(output_saved_model_dir)
Run Code Online (Sandbox Code Playgroud)
第二个是
import tensorflow as tf
from tensorflow.python.compiler.tensorrt import trt_convert as trt
conversion_params = trt.DEFAULT_TRT_CONVERSION_PARAMS
conversion_params = conversion_params._replace(
max_workspace_size_bytes=(1<<32))
conversion_params = conversion_params._replace(precision_mode="FP16")
conversion_params = conversion_params._replace(
maximum_cached_engiens=100)
converter = trt.TrtGraphConverterV2(
input_saved_model_dir=input_saved_model_dir,
conversion_params=conversion_params)
converter.convert()
def my_input_fn():
for _ in range(num_runs):
Inp1 = np.random.normal(size=(8, 16, 16, 3)).astype(np.float32)
inp2 = np.random.normal(size=(8, 16, 16, 3)).astype(np.float32)
yield inp1, inp2
converter.build(input_fn=my_input_fn)
converter.save(output_saved_model_dir)
saved_model_loaded = tf.saved_model.load(
output_saved_model_dir, tags=[tag_constants.SERVING]) …Run Code Online (Sandbox Code Playgroud)