我想使用Tensorflow构建一个多元线性回归模型.
数据集:波特兰房价
一个数据示例:2104,3,399900(前两个是功能,最后一个是房价;我们有47个示例)
代码如下:
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# model parameters as external flags
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 1.0, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 100, 'Number of steps to run trainer.')
flags.DEFINE_integer('display_step', 100, 'Display logs per step.')
def run_training(train_X, train_Y):
X = tf.placeholder(tf.float32, [m, n])
Y = tf.placeholder(tf.float32, [m, 1])
# weights
W = tf.Variable(tf.zeros([n, 1], dtype=np.float32), name="weight")
b = tf.Variable(tf.zeros([1], dtype=np.float32), name="bias")
# linear model
activation = tf.add(tf.matmul(X, …Run Code Online (Sandbox Code Playgroud) 这似乎tf.argmax()和tf.arg_max()正在做同样的事情在矩阵输出的最大元素的印度.
https://www.tensorflow.org/api_docs/python/tf/argmax https://www.tensorflow.org/api_docs/python/tf/arg_max
为什么TensorFlow有两个API?