小编Fel*_*a.H的帖子

pip installl tsne不起作用

我无法在我的Windows机器上安装tsne软件包.我按照这里的说明安装了Python的tsne包.但无论是pip install tsnepip install git+https://github.com/danielfrg/tsne.git工作.错误按摩是

      tsne/bh_sne_src/quadtree.cpp(12) : fatal error C1083: Cannot open include file: 'cblas.h': No such file or directory
      error: command 'C:\\Users\\hzoe\\AppData\\Local\\Programs\\Common\\Microsoft\\Visual C++ for Python\\9.0\\VC\\Bin\\amd64\\cl.exe' failed with exit status 2

      ----------------------------------------
      Failed building wheel for tsne
      Running setup.py clean for tsne
    Failed to build tsne
    Installing collected packages: tsne
      Running setup.py install for tsne: started
        Running setup.py install for tsne: finished with status 'error'
        Complete output from command C:\Users\hzoe\AppData\Local\Continuum\Anaconda\python.exe -u -c "import setuptools, …
Run Code Online (Sandbox Code Playgroud)

python pip

6
推荐指数
1
解决办法
3301
查看次数

TfidfVectorizer NotFittedError

我正在使用sklearn Pipeline和FeatureUnion从文本文件创建功能,我想打印出功能名称.

首先,我将所有转换收集到一个列表中.

In [225]:components
Out[225]: 
[TfidfVectorizer(analyzer=u'word', binary=False, decode_error=u'strict',
         dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
         lowercase=True, max_df=0.85, max_features=None, min_df=6,
         ngram_range=(1, 1), norm='l1', preprocessor=None, smooth_idf=True,
         stop_words='english', strip_accents=None, sublinear_tf=True,
         token_pattern=u'(?u)[#a-zA-Z0-9/\\-]{2,}',
         tokenizer=StemmingTokenizer(proc_type=stem, token_pattern=(?u)[a-zA-Z0-9/\-]{2,}),
         use_idf=True, vocabulary=None),
 TruncatedSVD(algorithm='randomized', n_components=150, n_iter=5,
        random_state=None, tol=0.0),
 TextStatsFeatures(),
 DictVectorizer(dtype=<type 'numpy.float64'>, separator='=', sort=True,
         sparse=True),
 DictVectorizer(dtype=<type 'numpy.float64'>, separator='=', sort=True,
         sparse=True),
 TfidfVectorizer(analyzer=u'word', binary=False, decode_error=u'strict',
         dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
         lowercase=True, max_df=0.85, max_features=None, min_df=6,
         ngram_range=(1, 2), norm='l1', preprocessor=None, smooth_idf=True,
         stop_words='english', strip_accents=None, sublinear_tf=True,
         token_pattern=u'(?u)[a-zA-Z0-9/\\-]{2,}',
         tokenizer=StemmingTokenizer(proc_type=stem, token_pattern=(?u)[a-zA-Z0-9/\-]{2,}),
         use_idf=True, vocabulary=None)]
Run Code Online (Sandbox Code Playgroud)

例如,第一个组件是TfidfVectorizer()对象.

components[0]
Out[226]: 
TfidfVectorizer(analyzer=u'word', binary=False, decode_error=u'strict',
        dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content', …
Run Code Online (Sandbox Code Playgroud)

python pipeline scikit-learn

3
推荐指数
1
解决办法
1524
查看次数

如何解释sklearn决策树树中的children_left属性_

我正在尝试使用 sklearn DecisionTreeClassifier 中的“tree_”方法提取最深节点的规则。我很难理解模型中 'children_left' 和 'children_right' 数组的含义。谁能帮忙解释一下?

estimator = DecisionTreeClassifier(max_depth=4, random_state=0)
estimator.fit(X_train, y_train)
estimator.tree_.children_left

[6] array([ 1,  2,  3,  4,  5, -1, -1,  8, -1, -1, 11, 12, -1, -1, 15, -1, -1,
   18, 19, 20, -1, -1, 23, -1, -1, 26, 27, -1, -1, 30, -1, -1, 33, 34,
   35, 36, -1, -1, 39, -1, -1, 42, 43, -1, -1, 46, -1, -1, 49, 50, 51,
   -1, -1, 54, -1, -1, 57, 58, -1, -1, 61, -1, -1]) …
Run Code Online (Sandbox Code Playgroud)

tree decision-tree scikit-learn

3
推荐指数
1
解决办法
2187
查看次数

标签 统计

python ×2

scikit-learn ×2

decision-tree ×1

pip ×1

pipeline ×1

tree ×1