我正在开发一个演示,代码很简单:
\n\n# tasks.py\nimport time\n\nfrom celery import Celery\n\napp = Celery(\'tasks\',\n broker=\'redis://:5tgb^YHN7ujm*IK<@localhost:6379/0\',\n backend=\'redis://:5tgb^YHN7ujm*IK<@localhost:6379/0\'\n )\n\n\n@app.task\ndef test_task(s):\n time.sleep(300)\n return s\n\n
Run Code Online (Sandbox Code Playgroud)\n\n然后启动工人
\n\n celery -A celery_test.app worker -n kalidog -c 2 -l debug -E\n\n -------------- celery@kalidog v4.3.0 (rhubarb)\n---- **** ----- \n--- * *** * -- Linux-4.9.0-8-amd64-x86_64-with-debian-9.8 2019-10-11 02:36:12\n-- * - **** --- \n- ** ---------- [config]\n- ** ---------- .> app: tasks:0x7f17bf92e128\n- ** ---------- .> transport: redis://:**@localhost:6379/0\n- ** ---------- .> results: redis://:**@localhost:6379/0\n- *** --- * --- .> concurrency: 2 (prefork)\n-- ******* ---- .> task …
Run Code Online (Sandbox Code Playgroud) 我用来sklearn.datasets.make_classification
生成一个应该是线性可分离的测试数据集。问题在于并非每个生成的数据集都是线性可分的。如何使用 生成线性可分离数据集sklearn.datasets.make_classification
?我的代码如下:
samples = make_classification(
n_samples=100, n_features=2, n_redundant=0,
n_informative=1, n_clusters_per_class=1, flip_y=-1
)
Run Code Online (Sandbox Code Playgroud)