难以回答的问题.这是我想做的一个例子.我开始的一个例子:
set.seed(0)
dt <- data.table(dr1.d=rnorm(5), dr1.p=abs(rnorm(5, sd=0.08)),
dr2.d=rnorm(5), dr2.p=abs(rnorm(5, sd=0.08)),
dr3.d=rnorm(5), dr3.p=abs(rnorm(5, sd=0.08)),
dr4.d=rnorm(5), dr4.p=abs(rnorm(5, sd=0.08)),
sym = paste("sym", c(1,1,1,2,2)))
dt
dr1.d dr1.p dr2.d dr2.p dr3.d dr3.p dr4.d dr4.p sym
1: 1.2629543 0.1231960034 0.7635935 0.03292087 -0.22426789 0.040288638 -0.2357066 0.09215294 sym 1
2: -0.3262334 0.0742853628 -0.7990092 0.02017788 0.37739565 0.086861549 -0.5428883 0.07937283 sym 1
3: 1.3297993 0.0235776357 -1.1476570 0.07135369 0.13333636 0.055276307 -0.4333103 0.03436105 sym 1
4: 1.2724293 0.0004613738 -0.2894616 0.03485466 0.80418951 0.102767948 -0.6494716 0.09906433 sym 2
5: 0.4146414 0.1923722711 -0.2992151 0.09900307 -0.05710677 …Run Code Online (Sandbox Code Playgroud) 我有一个很大的data.frames列表,需要按列成对绑定,然后在被送入预测模型之前按行绑定.由于没有值会被修改,我希望最终的data.frame指向我列表中的原始data.frames.
例如:
library(pryr)
#individual dataframes
df1 <- data.frame(a=1:1e6+0, b=1:1e6+1)
df2 <- data.frame(a=1:1e6+2, b=1:1e6+3)
df3 <- data.frame(a=1:1e6+4, b=1:1e6+5)
#each occupy 16MB
object_size(df1) # 16 MB
object_size(df2) # 16 MB
object_size(df3) # 16 MB
object_size(df1, df2, df3) # 48 MB
#will be in a named list
dfs <- list(df1=df1, df2=df2, df3=df3)
#putting into list doesn't create a copy
object_size(df1, df2, df3, dfs) #48MB
Run Code Online (Sandbox Code Playgroud)
最终的data.frame将具有此方向(每列唯一的data.frames由列绑定,然后由行绑定):
df1, df2
df1, df3
df2, df3
Run Code Online (Sandbox Code Playgroud)
我目前正在实施这样的:
#generate unique df combinations
df_names <- names(dfs)
pairs <- combn(df_names, 2, …Run Code Online (Sandbox Code Playgroud) 我正在尝试根据当前的选择更新choicesa 。这是我的尝试(导致循环):selectizeInputselected
library(shiny)
run_ui <- function() {
ui <- selectizeInput('words', 'Search words:', choices = NULL, selected = NULL, multiple = TRUE, options = NULL)
server <- function(input, output, session) {
# change 'Search words' ----
observeEvent(input$words, {
# handle no words (reset everything)
if (is.null(input$words)) {
cowords <- letters
} else {
# update cowords (choices for selectizeInput)
cowords <- unique(c(input$words, sample(letters, 5)))
}
# update UI
print('updating')
updateSelectizeInput(session, 'words', choices = cowords, selected = input$words, …Run Code Online (Sandbox Code Playgroud) 以下是我的data.frame的示例:
opts <- seq(-0.5, 0.5, 0.05)
df <- data.frame(combo1=sample(opts, 6),
combo2=sample(opts, 6),
combo3=sample(opts, 6),
gene=rep(c("g1", "g2", "g3"), each=2), stringsAsFactors=F)
df
combo1 combo2 combo3 gene
1 0.40 0.50 -0.10 g1
2 0.10 -0.20 -0.35 g1
3 -0.35 -0.35 0.40 g2
4 0.00 0.10 -0.30 g2
5 -0.45 -0.10 0.05 g3
6 -0.40 -0.40 -0.05 g3
Run Code Online (Sandbox Code Playgroud)
对于每个组合,我想按基因分组,然后选择最大绝对值.我可以使用dplyr完成此任务:
library(dplyr)
df_final <- data.frame(row.names=unique(df$gene))
for (combo in colnames(df)[1:3]) {
combo_preds <- df[, c(combo, "gene")]
colnames(combo_preds) <- c("pred", "gene")
combo_preds %>%
group_by(gene) %>%
arrange(desc(abs(pred))) %>%
slice(1) …Run Code Online (Sandbox Code Playgroud) 我有一个大型数据库(~100Gb),我需要从中提取每个条目,对其执行一些比较,然后存储这些比较的结果。我尝试在单个 R 会话中运行并行查询,但没有成功。我可以同时运行多个 R 会话,但我正在寻找更好的方法。这是我尝试的:
library(RSQLite)
library(data.table)
library(foreach)
library(doMC)
#---------
# SETUP
#---------
#connect to db
db <- dbConnect(SQLite(), dbname="genes_drug_combos.sqlite")
#---------
# QUERY
#---------
# 856086 combos = 1309 * 109 * 6
registerDoMC(8)
#I would run 6 seperate R sessions (one for each i)
res_list <- foreach(i=1:6) %dopar% {
a <- i*109-108
b <- i*109
pb <- txtProgressBar(min=a, max=b, style=3)
res <- list()
for (j in a:b) {
#get preds for drug combos
statement <- paste("SELECT * from combo_tstats …Run Code Online (Sandbox Code Playgroud)