小编Raj*_*Raj的帖子

R中的时间序列分析

我已经获得了118天的数据集.我应该预测接下来28天的价值.我已经尝试了下面的代码.但是我在28天内获得了相同的价值.你能帮我找到我的错吗?谢谢.

library(forecast)
library(dplyr)
head(product)
ts_product = ts(product$Qty, start=1,frequency=1)
ts_product
plot(ts_product)
#predictions of 28 days
m_ets = ets(ts_product)
f_ets = forecast(m_ets, h=28)
plot(f_ets)
Run Code Online (Sandbox Code Playgroud)

数据由Qty下式给出:

数量= c(53,40,37,45,69,105,62,101,104,46,92,157,133,173,139,163,145,154,245,147,85,131,228, 192,240,346,267,267,243,233,233,244,241,136,309,236,310,266,280,321,349,335,410,226,391,314,250,368, 282,203,250,233,233,277,338,279,279,266,253,178,238,126,279,258,350,277,226,287,180,268,191,279,214, 133,292,212,307,232,165,107,121,188,198,154,128,85,106,67,63,88,107,56,41,59,27,58,80,75, 93,54,14,36,107,82,83,112,37,57,9,51,47,57,68,97,25,45,69,89)

这是我得到的预测.

Point Forecast      Lo 80    Hi 80      Lo 95    Hi 95
119       69.53429   2.089823 136.9788  -33.61312 172.6817
120       69.53429  -2.569107 141.6377  -40.73834 179.8069
121       69.53429  -6.944751 146.0133  -47.43031 186.4989
122       69.53429 -11.083248 150.1518  -53.75959 192.8282
123       69.53429 -15.019428 154.0880  -59.77946 198.8480
124       69.53429 -18.780346 157.8489  -65.53129 204.5999
125       69.53429 …
Run Code Online (Sandbox Code Playgroud)

r time-series forecasting

1
推荐指数
1
解决办法
726
查看次数

标签 统计

forecasting ×1

r ×1

time-series ×1