二元分类问题:我想要一个输入层(可选),一个 Conv1D 层,然后输出 1 个神经元预测 1 或 0 的层。
这是我的模型:
x_train = np.expand_dims(x_train,axis=1)
x_valid = np.expand_dims(x_valid,axis=1)
#x_train = x_train.reshape(x_train.shape[0], 1, x_train.shape[1])
#x_valid = x_train.reshape(x_valid.shape[0], 1, x_train.shape[1])
model = Sequential()
#hidden layer
model.add(Convolution1D(filters = 1, kernel_size = (3),input_shape=(1,x_train.shape[2])))
#output layer
model.add(Flatten())
model.add(Dense(1, activation = 'softmax'))
sgd = SGD(lr=0.01, nesterov=True, decay=1e-6, momentum=0.9)
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
print('model compiled successfully')
model.fit(x_train, y_train, nb_epoch = nb_epochs, validation_data=(x_valid,y_valid), batch_size=100)
Run Code Online (Sandbox Code Playgroud)
输入形状:x_train.shape = (5,1,133906) 分别是 (batch,steps,channels)。通过 expand_dims 添加的步骤。实际大小 (5,133906) 是长度为 133906 的时间序列数据的 5 个样本,有时在 2 ms 时随机采样,有时在 …
convolution python-3.x conv-neural-network keras keras-layer