在我的 R 脚本中,我有一个SparkDataFrame包含四个不同月份数据的两列(时间、值)。由于我需要将我的函数分别应用到每个月,我想我会将repartition它分成四个分区,每个分区将保存一个月的数据。
我创建了一个名为 partition 的附加列,具有一个整数值 0 - 3,然后repartition通过此特定列调用该方法。
可悲的是,正如本主题中所描述的那样:
Spark SQL - df.repartition 和 DataFrameWriter partitionBy 之间的区别?,使用该repartition方法我们只确定所有具有相同键的数据最终会在同一个分区中,但是具有不同键的数据也可以最终在同一个分区中。
就我而言,执行下面可见的代码会创建 4 个分区,但只用数据填充其中的 2 个。
我想我应该使用该partitionBy方法,但是在 SparkR 的情况下,我不知道该怎么做。官方文档指出,此方法适用于称为WindowSpec而不是DataFrame.
我真的很感激这方面的一些帮助,因为我不知道如何将此方法合并到我的代码中。
sparkR.session(
master="local[*]", sparkConfig = list(spark.sql.shuffle.partitions="4"))
df <- as.DataFrame(inputDat) # this is a dataframe with added partition column
repartitionedDf <- repartition(df, col = df$partition)
schema <- structType(
structField("time", "timestamp"),
structField("value", "double"),
structField("partition", "string"))
processedDf <- dapply(repartitionedDf,
function(x) { data.frame(produceHourlyResults(x), …Run Code Online (Sandbox Code Playgroud)