小编Qih*_*ong的帖子

关于"tensorflow.initialize_all_variables()"

我想知道以下两段代码之间的区别是什么:

import tensorflow as tf
x = tf.Variable(0, name='x')
model = tf.initialize_all_variables()
with tf.Session() as session:
    for i in range(5):

        session.run(model)
        x = x + 1

        print(session.run(x))
Run Code Online (Sandbox Code Playgroud)
import tensorflow as tf
x = tf.Variable(0, name='x')
model = tf.initialize_all_variables()
with tf.Session() as session:
    for i in range(5):

        x = x + 1
        session.run(model)

        print(session.run(x))
Run Code Online (Sandbox Code Playgroud)

唯一的区别是"x = x + 1"和"session.run(model)"的顺序.我认为它会对输出产生很大的影响,因为session.run(model)会初始化所有变量.但是,这两个代码块输出相同的东西......

代码从教程中复制:http://learningtensorflow.com/lesson2/

tensorflow

10
推荐指数
1
解决办法
5558
查看次数

标签 统计

tensorflow ×1