我使用slim框架进行张量流,因为它简单.但是我希望卷积层具有偏差和批量标准化.在vanilla tensorflow中,我有:
def conv2d(input_, output_dim, k_h=5, k_w=5, d_h=2, d_w=2, name="conv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.contrib.layers.xavier_initializer(uniform=False))
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", biases)
return conv
d_bn1 = BatchNorm(name='d_bn1')
h1 = lrelu(d_bn1(conv2d(h0, df_dim + y_dim, name='d_h1_conv')))
Run Code Online (Sandbox Code Playgroud)
然后我把它重写为苗条:
h1 = slim.conv2d(h0,
num_outputs=self.df_dim + self.y_dim,
scope='d_h1_conv',
kernel_size=[5, 5],
stride=[2, 2],
activation_fn=lrelu,
normalizer_fn=layers.batch_norm,
normalizer_params=batch_norm_params,
weights_initializer=layers.xavier_initializer(uniform=False),
biases_initializer=tf.constant_initializer(0.0)
)
Run Code Online (Sandbox Code Playgroud)
但是这段代码不会给conv层增加偏见.那是因为https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/layers.py#L1025其中是
layer = layer_class(filters=num_outputs,
kernel_size=kernel_size, …Run Code Online (Sandbox Code Playgroud) 在 tensorflow 中,有一个众所周知的批量归一化,它将权重更新操作添加到tf.GraphKeys.UPDATE_OPS。但是在实例规范化的情况下,没有添加更新操作。使用时tf.contrib.layer.batch_norm,我可以指定is_training将更新操作添加到集合的参数。但是 for tf.contrib.layer.instance_normandtf.contrib.layer.group_norm没有这样的参数,也没有添加 op 到tf.GraphKeys.UPDATE_OPS.
这是正确的行为,还是 tensorflow 中的错误?那么实例标准化中的更新操作如何工作?
假设我有一个向量a = [1, 0, 1, 2, 3, 4, 5, 0, 5, 6, 7, 8, 0, 9, 0],我想根据该数组中的值的条件将其分割为更小的向量。例如值为零。\n因此我想获得以下向量的向量
[1, 0]\n [1, 2, 3, 4, 5, 0]\n [5, 6, 7, 8, 0]\n [9, 0]\nRun Code Online (Sandbox Code Playgroud)\n到目前为止,这对我来说是一个幼稚的解决方案,但它失去了类型。
\nfunction split_by_\xce\xbb(a::Vector, \xce\xbb)\n b = []\n temp = []\n for i in a\n push!(temp, i)\n if \xce\xbb(i)\n push!(b, temp)\n temp = []\n end\n end\n b\nend\nsplit_by_\xce\xbb(a, isequal(0))\nRun Code Online (Sandbox Code Playgroud)\n然后我尝试使用范围,感觉更惯用一点,并且不会丢失类型。
\nfunction split_by_\xce\xbb(a::Vector, \xce\xbb)\n idx = findall(\xce\xbb, a)\n ranges = [(:)(i==1 ? 1 : …Run Code Online (Sandbox Code Playgroud)