我正在尝试实现一个FCNN用于图像分类,可以接受可变大小的输入.该模型使用TensorFlow后端在Keras中构建.
考虑以下玩具示例:
model = Sequential()
# width and height are None because we want to process images of variable size
# nb_channels is either 1 (grayscale) or 3 (rgb)
model.add(Convolution2D(32, 3, 3, input_shape=(nb_channels, None, None), border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 3, 3, border_mode='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(16, 1, 1))
model.add(Activation('relu'))
model.add(Convolution2D(8, 1, 1))
model.add(Activation('relu'))
# reduce the number of dimensions to the number of classes
model.add(Convolution2D(nb_classses, 1, 1))
model.add(Activation('relu'))
# do global pooling to yield one value per class
model.add(GlobalAveragePooling2D())
model.add(Activation('softmax')) …Run Code Online (Sandbox Code Playgroud) Keras ImageDataGenerator类提供了两种流方法flow(X, y)和flow_from_directory(directory)(https://keras.io/preprocessing/image/).
为什么是参数
target_size:整数元组,默认值:(256,256).找到所有图像的尺寸将调整大小
仅由flow_from_directory(目录)提供?使用flow(X,y)将图像重新整形到预处理管道的最简洁方法是什么?
我想测试一个应该连续运行直到被杀死的任务。假设正在测试以下方法:
public class Worker
{
public async Task Run(CancellationToken cancellationToken)
{
while (!cancellationToken.IsCancellationRequested)
{
try
{
// do something like claim a resource
}
catch (Exception e)
{
// catch exceptions and print to the log
}
finally
{
// release the resource
}
}
}
}
Run Code Online (Sandbox Code Playgroud)
和一个测试用例
[TestCase]
public async System.Threading.Tasks.Task Run_ShallAlwaysReleaseResources()
{
// Act
await domainStateSerializationWorker.Run(new CancellationToken());
// Assert
// assert that resource release has been called
}
Run Code Online (Sandbox Code Playgroud)
问题是任务永远不会终止,因为永远不会请求取消。最终,我想创建一个CancellationToken存根,MockRepository.GenerateStub<CancellationToken>()并告诉它IsCancellationRequested返回哪个调用true,但CancellationToken …
我正在尝试使用无服务器框架将 Plotly Dash 应用程序部署为 AWS Lambda。该应用程序在本地按预期运行,我可以使用serverless wsgi serve命令启动它。serverless deploy报告成功。然而,当调用时,lambda 失败并出现以下错误:
Traceback (most recent call last):
File "/var/task/wsgi_handler.py", line 44, in import_app
wsgi_module = importlib.import_module(wsgi_fqn_parts[-1])
File "/var/lang/lib/python3.8/importlib/__init__.py", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File "<frozen importlib._bootstrap>", line 1014, in _gcd_import
File "<frozen importlib._bootstrap>", line 991, in _find_and_load
File "<frozen importlib._bootstrap>", line 975, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 671, in _load_unlocked
File "<frozen importlib._bootstrap_external>", line 783, in exec_module
File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed …Run Code Online (Sandbox Code Playgroud) python amazon-web-services aws-lambda serverless-framework plotly-dash
在Pandas中,有一种get_dummies方法可以对分类变量进行单热编码.现在我想按照深度学习书7.5.1节中的描述进行标签平滑:
标签平滑规则化基于与一个添加Softmax模型ķ通过更换硬输出值0和1与目标分类目标
eps / k和1 - (k - 1) / k * eps分别.
在Pandas数据帧中做标签熏制的最有效和/或最优雅的方法是什么?
keras ×2
python ×2
asynchronous ×1
aws-lambda ×1
c# ×1
pandas ×1
plotly-dash ×1
rhino-mocks ×1
tensorflow ×1
unit-testing ×1