我有一个具有以下结构的表
USER_ID Tweet_ID Date
1 1001 Thu Aug 05 19:11:39 +0000 2010
1 6022 Mon Aug 09 17:51:19 +0000 2010
1 1041 Sun Aug 19 11:10:09 +0000 2010
2 9483 Mon Jan 11 10:51:23 +0000 2012
2 4532 Fri May 21 11:11:11 +0000 2012
3 4374 Sat Jul 10 03:21:23 +0000 2013
3 4334 Sun Jul 11 04:53:13 +0000 2013
Run Code Online (Sandbox Code Playgroud)
基本上我想要做的是有一个PysparkSQL查询,它计算具有相同user_id号的连续记录的日期差异(以秒为单位).预期结果将是:
1 Sun Aug 19 11:10:09 +0000 2010 - Mon Aug 09 17:51:19 +0000 2010 839930
1 Mon …Run Code Online (Sandbox Code Playgroud) 我想在pyspark(spark 2.1.1)中运行此代码:
from pyspark.ml.feature import PCA
bankPCA = PCA(k=3, inputCol="features", outputCol="pcaFeatures")
pcaModel = bankPCA.fit(bankDf)
pcaResult = pcaModel.transform(bankDF).select("label", "pcaFeatures")
pcaResult.show(truncate= false)
Run Code Online (Sandbox Code Playgroud)
但我得到这个错误:
要求失败:列要素必须是类型
org.apache.spark.ml.linalg.Vect orUDT@3bfc3ba7但实际上是org.apache.spark.mllib.linalg.VectorUDT@f71b0bce.
我试图以编程方式在textFile上强制执行schema(json),它看起来像json.我尝试使用jsonFile,但问题是从json文件列表创建数据帧,spark必须通过数据传递1次来为数据帧创建模式.因此,它需要解析所有需要更长时间的数据(自我的数据压缩后4小时以及TB的大小).因此,我想尝试将其作为textFile读取并强制执行模式以单独获取感兴趣的字段,以便稍后查询结果数据框.但我不知道如何将其映射到输入.有些人可以给我一些参考,如何将模式映射到json,如输入.
输入:
这是完整的架构:
records: org.apache.spark.sql.DataFrame = [country: string, countryFeatures: string, customerId: string, homeCountry: string, homeCountryFeatures: string, places: array<struct<freeTrial:boolean,placeId:string,placeRating:bigint>>, siteName: string, siteId: string, siteTypeId: string, Timestamp: bigint, Timezone: string, countryId: string, pageId: string, homeId: string, pageType: string, model: string, requestId: string, sessionId: string, inputs: array<struct<inputName:string,inputType:string,inputId:string,offerType:string,originalRating:bigint,processed:boolean,rating:bigint,score:double,methodId:string>>]
Run Code Online (Sandbox Code Playgroud)
但我只对以下几个领域感兴趣:
res45: Array[String] = Array({"requestId":"bnjinmm","siteName":"bueller","pageType":"ad","model":"prepare","inputs":[{"methodId":"436136582","inputType":"US","processed":true,"rating":0,"originalRating":1},{"methodId":"23232322","inputType":"UK","processed":falase,"rating":0,"originalRating":1}]
val records = sc.textFile("s3://testData/sample.json.gz")
val schema = StructType(Array(StructField("requestId",StringType,true),
StructField("siteName",StringType,true),
StructField("model",StringType,true),
StructField("pageType",StringType,true),
StructField("inputs", ArrayType(
StructType(
StructField("inputType",StringType,true),
StructField("originalRating",LongType,true),
StructField("processed",BooleanType,true),
StructField("rating",LongType,true),
StructField("methodId",StringType,true)
),true),true)))
val rowRDD = ??
val inputRDD = sqlContext.applySchema(rowRDD, schema)
inputRDD.registerTempTable("input")
sql("select …Run Code Online (Sandbox Code Playgroud)