我正在尝试使用 pandas.read_csv 导入 csv 文件。文件内容如下:
"COL_A","COL_B","COL_C"
"ROW1COLA","ROW1COLB","ROW1COLC","ROW1COLD"
"ROW2COLA","ROW2COLB","ROW2COLC","ROW2COLD"
"ROW3COLA","ROW3COLB","ROW3COLC","ROW3COLD"
"ROW4COLA","ROW4COLB","ROW4COLC","ROW4COLD"
"ROW5COLA","ROW5COLB","ROW5COLC","ROW5COLD"
"ROW6COLA","ROW6COLB","ROW6COLC","ROW6COLD"
"ROW7COLA","ROW7COLB","ROW7COLC","ROW7COLD"
Run Code Online (Sandbox Code Playgroud)
在第一次尝试中我跑了:
data = pd.read_csv('broken.csv')
Run Code Online (Sandbox Code Playgroud)
我得到了:
COL_A COL_B COL_C
ROW1COLA ROW1COLB ROW1COLC ROW1COLD
ROW2COLA ROW2COLB ROW2COLC ROW2COLD
ROW3COLA ROW3COLB ROW3COLC ROW3COLD
ROW4COLA ROW4COLB ROW4COLC ROW4COLD
ROW5COLA ROW5COLB ROW5COLC ROW5COLD
ROW6COLA ROW6COLB ROW6COLC ROW6COLD
ROW7COLA ROW7COLB ROW7COLC ROW7COLD
Run Code Online (Sandbox Code Playgroud)
设置index_col=False
data = pd.read_csv('broken.csv',index_col=False)
Run Code Online (Sandbox Code Playgroud)
我有
COL_A COL_B COL_C
0 ROW1COLA ROW1COLB ROW1COLC
1 ROW2COLA ROW2COLB ROW2COLC
2 ROW3COLA ROW3COLB ROW3COLC
3 ROW4COLA ROW4COLB ROW4COLC
4 ROW5COLA ROW5COLB ROW5COLC
5 ROW6COLA ROW6COLB …Run Code Online (Sandbox Code Playgroud) 我正在编写一个处理 CSV 文件的程序。这些文件可以具有特定的编码。我正在尝试合并一个过程来尝试猜测用户想要使用 chardet 打开的文件的编码。
\n\n我正在尝试使用以下代码:
\n\nrawdata = open(\'file.csv\', "r").read()\nresult = chardet.detect(rawdata)\nRun Code Online (Sandbox Code Playgroud)\n\n但我收到以下例外:
\n\n/usr/lib/python3.5/site-packages/chardet/__init__.py in detect(aBuf)\n 23 if ((version_info < (3, 0) and isinstance(aBuf, unicode)) or\n 24 (version_info >= (3, 0) and not isinstance(aBuf, bytes))):\n---> 25 raise ValueError(\'Expected a bytes object, not a unicode object\')\n 26 \n 27 from . import universaldetector\n\nValueError: Expected a bytes object, not a unicode object\nRun Code Online (Sandbox Code Playgroud)\n\n我也尝试过:
\n\nresult = chardet.detect(bytes(rawdata))\nRun Code Online (Sandbox Code Playgroud)\n\n但得到:
\n\nTypeError Traceback (most recent call last)\n<ipython-input-47-1137b0adb486> in …Run Code Online (Sandbox Code Playgroud) 我有以下功能
import numpy as np
import scipy.optimize as optimize
def x(theta1, theta2, w, h, L1, L2):
sint1 = np.sin(theta1)
cost1 = np.cos(theta1)
sint2 = np.sin(theta2)
cost2 = np.cos(theta2)
i1 = L1 * (cost1 + cost2) + w
j1 = L1 * (sint1 - sint2) - h
D = np.sqrt((L1*(cost2-cost1)+w)**2+(L1*(sint2-sint1)+h)**2)
a = (0.25)*np.sqrt((4*L2**2-D**2)*D**2)
return i1/2 + 2*j1*a/(D**2)
def y(theta1, theta2, w, h, L1, L2):
sint1 = np.sin(theta1)
cost1 = np.cos(theta1)
sint2 = np.sin(theta2)
cost2 = np.cos(theta2)
i2 = L1 * (sint1 …Run Code Online (Sandbox Code Playgroud)