我正在尝试使用tensorflow使用深度卷积神经网络实现简单的性别分类器.我找到了这个模型并实现了它.
def create_model_v2(data):
cl1_desc = {'weights':weight_variable([7,7,3,96]), 'biases':bias_variable([96])}
cl2_desc = {'weights':weight_variable([5,5,96,256]), 'biases':bias_variable([256])}
cl3_desc = {'weights':weight_variable([3,3,256,384]), 'biases':bias_variable([384])}
fc1_desc = {'weights':weight_variable([240000, 128]), 'biases':bias_variable([128])}
fc2_desc = {'weights':weight_variable([128,128]), 'biases':bias_variable([128])}
fc3_desc = {'weights':weight_variable([128,2]), 'biases':bias_variable([2])}
cl1 = conv2d(data,cl1_desc['weights'] + cl1_desc['biases'])
cl1 = tf.nn.relu(cl1)
pl1 = max_pool_nxn(cl1,3,[1,2,2,1])
lrm1 = tf.nn.local_response_normalization(pl1)
cl2 = conv2d(lrm1, cl2_desc['weights'] + cl2_desc['biases'])
cl2 = tf.nn.relu(cl2)
pl2 = max_pool_nxn(cl2,3,[1,2,2,1])
lrm2 = tf.nn.local_response_normalization(pl2)
cl3 = conv2d(lrm2, cl3_desc['weights'] + cl3_desc['biases'])
cl3 = tf.nn.relu(cl3)
pl3 = max_pool_nxn(cl3,3,[1,2,2,1])
fl = tf.contrib.layers.flatten(cl3)
fc1 = tf.add(tf.matmul(fl, fc1_desc['weights']), fc1_desc['biases'])
drp1 …Run Code Online (Sandbox Code Playgroud) loss neural-network deep-learning conv-neural-network tensorflow
我有一个图像列表存储它几个Mat对象,我需要将它们推入Mat的矢量.
vector<Mat> images;
Mat image;
for ( i = 0; i < n; i++)
{
\\ importing the i-th image into a mat image;
images.push_back(image);
}
Run Code Online (Sandbox Code Playgroud)
这是否会创建图像的深层副本?
当然
vector<Mat> images;
Mat image (100, 100, CV_8UC(1), Scalar::all(255));
images.push_back(image);
image.release();
Mat temp (100,100, CV_8UC(1), Scalar::all(0));
image = temp;
images.push_back(image);
imshow("black", images[0]);
waitKey(0);
imshow("White",images[1]);
waitKey(0);
Run Code Online (Sandbox Code Playgroud)
这应该显示一个黑色和一个白色图像.
另一个问题
Mat img;
vector<mat> images;
for (i = 1; i < 5, i++)
{
img.create(h,w,type); // h,w and type are given correctly
// input an image from …Run Code Online (Sandbox Code Playgroud) 这个问题已经在这里得到回答,但对我来说,有些事情仍然悬而未决,而且讨论太旧了,任何人都无法回复评论,此外我想问我的实现中出了什么问题。
无论如何,问题设置。我想为 3D 维度数组分配空间3, h, w。我在做什么:
int ***a = (int***)malloc(3 * sizeof(int*));
for (int i = 0; i < 3; i++)
{
a[i] = (int **) malloc(height * sizeof(int*));
}
Run Code Online (Sandbox Code Playgroud)
我理解这是为三个 3 创建第一个空间int**,然后分配高度int**;然后 :
for (int i = 0; i < 3; i++)
{
a[i][0] = (int *) malloc(height * width * sizeof(int *));
for (int j = 1; j < height; j++)
{
a[i][j] = a[i][j-1] + width;
}
}
Run Code Online (Sandbox Code Playgroud)
所以现在我认为每个a[i][0] …
所以我有两个分支,假设分支 A 和分支 BI 已将分支 A 合并到分支 B。
git checkout B
git merge A
Run Code Online (Sandbox Code Playgroud)
现在我想在命令行中解决有利于分支 A 的差异。我该怎么做?