给出以下示例:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import NMF
from sklearn.pipeline import Pipeline
import pandas as pd
pipe = Pipeline([
("tf_idf", TfidfVectorizer()),
("nmf", NMF())
])
data = pd.DataFrame([["Salut comment tu vas", "Hey how are you today", "I am okay and you ?"]]).T
data.columns = ["test"]
pipe.fit_transform(data.test)
Run Code Online (Sandbox Code Playgroud)
我想在scikit学习管道中获得与tf_idf输出相对应的中间数据状态(在tf_idf上的fit_transform但不是NMF之后)或NMF输入.或者用另一种方式说出来,这与申请相同
TfidfVectorizer().fit_transform(data.test)
Run Code Online (Sandbox Code Playgroud)
我知道pipe.named_steps ["tf_idf"] ti获得中间变换器,但我无法获取数据,只能使用此方法获取变换器的参数.