该作业的任务是计算损失相对于该层输入的偏导数。您必须实施链式法则。
我很难从概念上理解如何设置该功能。任何建议或提示将不胜感激!
函数变量的示例数据位于底部。
def dense_grad_input(x_input, grad_output, W, b):
"""Calculate the partial derivative of
the loss with respect to the input of the layer
# Arguments
x_input: input of a dense layer - np.array of size `(n_objects, n_in)`
grad_output: partial derivative of the loss functions with
respect to the ouput of the dense layer
np.array of size `(n_objects, n_out)`
W: np.array of size `(n_in, n_out)`
b: np.array of size `(n_out,)`
# Output
the partial derivative of the loss with
respect to …Run Code Online (Sandbox Code Playgroud)python machine-learning derivative differential-equations deep-learning
我有150,000行文本文件,它存储为字符串数组,如下所示:
String[] OutputArray = File.ReadAllLines(TB_Complete.Text);
Run Code Online (Sandbox Code Playgroud)
如何从OutputArray中删除指定的行列表?或者更好的是我如何删除前1000行的OutputArray?
*编辑:我需要前1000行读取,解析,输出到另一个文本文件,然后删除.对不起,我没有澄清.