当我运行 demo.py 时
\nfrom transformers import AutoTokenizer, AutoModel\n \ntokenizer = AutoTokenizer.from_pretrained("distilbert-base-multilingual-cased")\nmodel = AutoModel.from_pretrained("distilbert-base-multilingual-cased", return_dict=True)\n# print(model)\ndef count_parameters(model):\n return sum(p.numel() for p in model.parameters() if p.requires_grad)\nprint(count_parameters(model))\ninputs = tokenizer("\xe5\x8f\xb2\xe5\xaf\x86\xe6\x96\xaf\xe5\x85\x88\xe7\x94\x9f\xe4\xb8\x8d\xe5\x9c\xa8\xef\xbc\x8c\xe4\xbb\x96\xe5\x8e\xbb\xe7\x9c\x8b\xe7\x94\xb5\xe5\xbd\xb1\xe4\xba\x86\xe3\x80\x82Mr Smith is not in. He ________ ________to the cinema", return_tensors="pt")\nprint(inputs)\noutputs = model(**inputs)\nprint(outputs)\nRun Code Online (Sandbox Code Playgroud)\n代码显示
\n{'input_ids': tensor([[ 101, 2759, 3417, 4332, 2431, 5600, 2080, 3031, 10064, 2196,\n 2724, 5765, 5614, 3756, 2146, 1882, 12916, 11673, 10124, 10472,\n 10106, 119, 10357, 168, 168, 168, 168, 168, 168, 168,\n 168, 168, 168, 168, 168, 168, …Run Code Online (Sandbox Code Playgroud) multilingual distilbert huggingface-transformers huggingface-tokenizers