小编Yar*_*rik的帖子

使用StanfordParser从解析的句子中获取类型化的依赖项

使用NLTK的StanfordParser,我可以解析这样一句话:

os.environ['STANFORD_PARSER'] = 'C:\jars' 
os.environ['STANFORD_MODELS'] = 'C:\jars'  
os.environ['JAVAHOME'] ='C:\ProgramData\Oracle\Java\javapath' 
parser = stanford.StanfordParser(model_path="C:\jars\englishPCFG.ser.gz")
sentences = parser.parse(("bring me a red ball",)) 
for sentence in sentences:
    sentence    
Run Code Online (Sandbox Code Playgroud)

结果是:

Tree('ROOT', [Tree('S', [Tree('VP', [Tree('VB', ['Bring']),
Tree('NP', [Tree('DT', ['a']), Tree('NN', ['red'])]), Tree('NP',
[Tree('NN', ['ball'])])]), Tree('.', ['.'])])])
Run Code Online (Sandbox Code Playgroud)

除了上图之外,我如何使用Stanford解析器获取类型化的依赖项?就像是:

  1. root(ROOT-0,带-1)
  2. iobj(带-1,我-2)
  3. det(ball-5,a-3)
  4. amod(ball-5,red-4)
  5. dobj(带-1,球-5)

python parsing nlp nltk stanford-nlp

8
推荐指数
1
解决办法
1816
查看次数

标签 统计

nlp ×1

nltk ×1

parsing ×1

python ×1

stanford-nlp ×1