我对 ggplot 图例有一些问题,这是我的第一个代码,只有 corrGenes 的图例,这很好。
gene1=c(1.041,0.699,0.602,0.602,2.585,0.602,1.000,0.602,1.230,1.176,0.699,0.477,1.322)
BIME = c(0.477,0.477,0.301,0.477,2.398,0.301,0.602,0.301,0.602,0.699,0.602,0.477,1.176)
corrGenes=c(0.922,0.982,0.934,0.917,0.993,0.697,0.000,0.440,0.859,0.788,0.912,0.687,0.894)
DF=data.frame(gene1,BIME,corrGenes)
plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
geom_point(aes(colour=corrGenes),size=5)+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")
Run Code Online (Sandbox Code Playgroud)
当我添加 abline 和 smooth 时,我得到了正确的图:
plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
geom_point(aes(colour=corrGenes),size=5)+
geom_abline(intercept=0, slope=1)+
stat_smooth(method = "lm",se=FALSE)+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")
Run Code Online (Sandbox Code Playgroud)
但没有办法为他们获得传奇,我尝试了许多其他组合:
plot= ggplot(data=DF,aes(x=gene1,y=BIME))+
geom_point(aes(colour=corrGenes),size=5)+
geom_abline(aes(colour="best"),intercept=0, slope=1)+
stat_smooth(aes(colour="data"),method = "lm",se=FALSE)+
scale_colour_manual(name="Fit", values=c("data"="blue", "best"="black"))+
ylab("BIME normalized counts (log10(RPKM))")+
xlab("gene1 normalized counts (log10(RPKM))")
Run Code Online (Sandbox Code Playgroud)
如果有人有解决这个微小但非常烦人的问题的想法,那将非常有帮助!
我尝试从包中plot.roc的函数重现 ROC 曲线。pRocggplot2
library(mlbench)
library(caret)
data(Sonar)
set.seed(998)
fitControl <- trainControl(method = "repeatedcv",
number = 10,
repeats = 10,
## Estimate class probabilities
classProbs = TRUE,
## Evaluate performance using
## the following function
summaryFunction = twoClassSummary)
gbmGrid <- expand.grid(interaction.depth = c(1, 5, 9),
n.trees = (1:30)*50,
shrinkage = 0.1,
n.minobsinnode = 20)
inTraining <- createDataPartition(Sonar$Class, p = .75, list = FALSE)
training <- Sonar[ inTraining,]
testing <- Sonar[-inTraining,]
set.seed(825)
gbmFit <- train(Class ~ ., data = …Run Code Online (Sandbox Code Playgroud)