小编Jac*_*esH的帖子

Apache Spark不如Scikit Learn准确吗?

我最近一直试图了解Apache Spark作为Scikit Learn的替代品,但在我看来,即使在简单的情况下,Scikit也会比Spark更快地收敛到精确模型.例如,我使用以下脚本为非常简单的线性函数(z = x + y)生成了1000个数据点:

from random import random

def func(in_vals):
    '''result = x (+y+z+w....)'''
    result = 0
    for v in in_vals:
        result += v
    return result

if __name__ == "__main__":
    entry_count = 1000
    dim_count = 2
    in_vals = [0]*dim_count
    with open("data_yequalsx.csv", "w") as out_file:
        for entry in range(entry_count):
            for i in range(dim_count):
                in_vals[i] = random()
            out_val = func(in_vals)
            out_file.write(','.join([str(x) for x in in_vals]))
            out_file.write(",%s\n" % str(out_val))
Run Code Online (Sandbox Code Playgroud)

然后我运行了以下Scikit脚本:

import sklearn
from sklearn import linear_model

import numpy as np …
Run Code Online (Sandbox Code Playgroud)

machine-learning linear-regression scikit-learn apache-spark

10
推荐指数
1
解决办法
3549
查看次数