小编Tom*_* Yu的帖子

lis [[i]]出错:尝试选择少于一个元素

此代码用于计算某些给定坐标的总距离,但我不知道为什么它不起作用.

错误是: Error in lis[[i]] : attempt to select less than one element.

这是代码:

distant<-function(a,b)
{
  return(sqrt((a[1]-b[1])^2+(a[2]-b[2])^2))
}
totdistance<-function(lis)
{
  totdis=0
  for(i in 1:length(lis)-1)
  {
    totdis=totdis+distant(lis[[i]],lis[[i+1]])
  }
  totdis=totdis+distant(lis[[1]],lis[[length(lis)]])
  return(totdis)
}
liss1<-list()
liss1[[1]]<-c(12,12)
liss1[[2]]<-c(18,23)
liss1[[4]]<-c(29,25)
liss1[[5]]<-c(31,52)
liss1[[3]]<-c(24,21)
liss1[[6]]<-c(36,43)
liss1[[7]]<-c(37,14)
liss1[[8]]<-c(42,8)
liss1[[9]]<-c(51,47)
liss1[[10]]<-c(62,53)
liss1[[11]]<-c(63,19)
liss1[[12]]<-c(69,39)
liss1[[13]]<-c(81,7)
liss1[[14]]<-c(82,18)
liss1[[15]]<-c(83,40)
liss1[[16]]<-c(88,30)
Run Code Online (Sandbox Code Playgroud)

输出:

> totdistance(liss1)
Error in lis[[i]] : attempt to select less than one element
> distant(liss1[[2]],liss1[[3]])
[1] 6.324555
Run Code Online (Sandbox Code Playgroud)

r

21
推荐指数
1
解决办法
4万
查看次数

如何在 Google Colab 上安装 nvidia apex

我所做的是按照官方 github 站点上的说明进行操作

!git clone https://github.com/NVIDIA/apex
!cd apex
!pip install -v --no-cache-dir ./
Run Code Online (Sandbox Code Playgroud)

它给了我错误:

ERROR: Directory './' is not installable. Neither 'setup.py' nor 'pyproject.toml' found.
Exception information:
Traceback (most recent call last):
  File "/usr/local/lib/python3.6/dist-packages/pip/_internal/cli/base_command.py", line 178, in main
    status = self.run(options, args)
  File "/usr/local/lib/python3.6/dist-packages/pip/_internal/commands/install.py", line 326, in run
    self.name, wheel_cache
  File "/usr/local/lib/python3.6/dist-packages/pip/_internal/cli/base_command.py", line 268, in populate_requirement_set
    wheel_cache=wheel_cache
  File "/usr/local/lib/python3.6/dist-packages/pip/_internal/req/constructors.py", line 248, in install_req_from_line
    "nor 'pyproject.toml' found." % name
pip._internal.exceptions.InstallationError: Directory './' is not installable. Neither 'setup.py' nor 'pyproject.toml' found.
Run Code Online (Sandbox Code Playgroud)

python gpu nvidia pytorch google-colaboratory

12
推荐指数
4
解决办法
7981
查看次数

PyTorch-如何在评估模式下停用辍学

这是我定义的模型,它是具有2个完全连接层的简单lstm。

import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class mylstm(nn.Module):
    def __init__(self,input_dim, output_dim, hidden_dim,linear_dim):
        super(mylstm, self).__init__()
        self.hidden_dim=hidden_dim
        self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
        self.linear1=nn.Linear(hidden_dim,linear_dim)
        self.linear2=nn.Linear(linear_dim,output_dim)
    def forward(self, input):
        out,_=self.lstm(input)
        out=nn.Dropout(p=0.3)(out)
        out=self.linear1(out)
        out=nn.Dropout(p=0.3)(out)
        out=self.linear2(out)
        return out
Run Code Online (Sandbox Code Playgroud)

x_trainx_val是带有shape的float数据帧(4478,30),而y_trainy_val是带有shape的float df(4478,10)

    x_train.head()
Out[271]: 
       0       1       2       3    ...        26      27      28      29
0  1.6110  1.6100  1.6293  1.6370   ...    1.6870  1.6925  1.6950  1.6905
1  1.6100  1.6293  1.6370  1.6530   ...    1.6925  1.6950 …
Run Code Online (Sandbox Code Playgroud)

python deep-learning lstm pytorch dropout

7
推荐指数
1
解决办法
4388
查看次数

将项目列表列表转换为熊猫中的傻瓜

我有一个像这样的项目列表:

lgenre[8:15]

[['Action'],
 ['Action', 'Adventure', 'Thriller'],
 ['Comedy', 'Drama', 'Romance'],
 ['Comedy', 'Horror'],
 ['Animation', "Children's"],
 ['Drama'],
 ['Action', 'Adventure', 'Romance']]
Run Code Online (Sandbox Code Playgroud)

我想要的是:

    id  Action  Adventure   Thriller    Comedy  Drama   Romance Horror  Animation   Children's
0   0   1   0   0   0   0   0   0   0   0
1   1   1   1   1   0   0   0   0   0   0
2   2   0   0   0   1   1   1   0   0   0
3   3   0   0   0   1   0   0   1   0   0
4   4   0   0   0   0   0   0 …
Run Code Online (Sandbox Code Playgroud)

python nested-lists dataframe pandas

2
推荐指数
1
解决办法
565
查看次数

fastLm()比lm()慢得多

fastLm()比...慢得多lm().基本上,我只是打电话lm()fastLm()使用相同的公式和数据,但fastLm()似乎要慢得多lm().这可能吗?我只是不知道这怎么可能发生?

dim(dat)
#[1] 87462    90
##
library(Rcpp)
library(RcppEigen)
library(rbenchmark)

benchmark(fastLm(formula(mez),data=dat),lm(formula(mez),data=dat))
                              test replications elapsed relative user.self  sys.self user.child sys.child
1 fastLm(formula(mez), data = dat)          100  195.81    7.079    189.36     6.27         NA        NA
2     lm(formula(mez), data = dat)          100   27.66    1.000     24.52     3.02         NA        NA

summary(mez)

Call: lm(formula = totalActualVal ~ township + I(TotalFinishedSF^2) + 
    mainfloorSF + nbrFullBaths + township + range + qualityCodeDscr + 
    TotalFinishedSF:range + nbrBedRoom + PCT_HISP, data = …
Run Code Online (Sandbox Code Playgroud)

r rcpp

1
推荐指数
1
解决办法
1173
查看次数