小编naf*_*izh的帖子

Keras深度自动编码器预测是不准确的

我正在使用Keras深度自动编码器来重现我的稀疏[360, 6860]维度矩阵.每行是蛋白质序列的三卦计数.矩阵有两类蛋白质,但我希望网络最初不知道,这就是我使用自动编码器的原因.我正在关注keras博客autoencoder教程.

这是我的代码 -

# this is the size of our encoded representations
encoding_dim = 32  

input_img = Input(shape=(6860,))
encoded = Dense(128, activation='relu', activity_regularizer=regularizers.activity_l1(10e-5))(input_img)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(32, activation='relu')(encoded)

decoded = Dense(64, activation='relu')(encoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(6860, activation='sigmoid')(decoded)

autoencoder = Model(input=input_img, output=decoded)

# this model maps an input to its encoded representation
encoder = Model(input=input_img, output=encoded)

# create a placeholder for an encoded (32-dimensional) input
encoded_input_1 = Input(shape=(32,))
encoded_input_2 = Input(shape=(64,))
encoded_input_3 …
Run Code Online (Sandbox Code Playgroud)

neural-network theano deep-learning keras tensorflow

1
推荐指数
1
解决办法
3059
查看次数