我在这里掌握了 pytorch,并决定实现非常简单的 1 对 1 线性回归,从身高到体重。
获得数据集: https: //www.kaggle.com/datasets/mustafaali96/weight-height,但任何其他数据集都可以。
让我们导入有关女性的库和信息:
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df = pd.read_csv('weight-height.csv',sep=',')
#https://www.kaggle.com/datasets/mustafaali96/weight-height
height_f=df[df['Gender']=='Female']['Height'].to_numpy()
weight_f=df[df['Gender']=='Female']['Weight'].to_numpy()
plt.scatter(height_f, weight_f, c ="red",alpha=0.1)
plt.show()
Run Code Online (Sandbox Code Playgroud)
到目前为止,一切都很好。
让我们制作数据加载器:
class Data(Dataset):
def __init__(self, X: np.ndarray, y: np.ndarray) -> None:
# need to convert float64 to float32 else
# will get the following error
# RuntimeError: expected scalar type Double but found Float …
Run Code Online (Sandbox Code Playgroud)