我有像这样的pandas DataFrame
X Y Z Value
0 18 55 1 70
1 18 55 2 67
2 18 57 2 75
3 18 58 1 35
4 19 54 2 70
Run Code Online (Sandbox Code Playgroud)
我想以这种方式将这些数据写入文本文件,
18 55 1 70
18 55 2 67
18 57 2 75
18 58 1 35
19 54 2 70
Run Code Online (Sandbox Code Playgroud)
我尝试过类似的东西
f = open(writePath, 'a')
f.writelines(['\n', str(data['X']), ' ', str(data['Y']), ' ', str(data['Z']), ' ', str(data['Value'])])
f.close()
Run Code Online (Sandbox Code Playgroud)
但它不起作用.这该怎么做?
我用CMake找到Boost.找到了Boost,但CMake出错了
导入的目标不适用于Boost版本
请参阅下面的完整错误(来自macOS).我究竟做错了什么?
CMake Warning at /Applications/CMake.app/Contents/share/cmake-3.6/Modules/FindBoost.cmake:743 (message):
Imported targets not available for Boost version 106300
Call Stack (most recent call first):
/Applications/CMake.app/Contents/share/cmake-3.6/Modules/FindBoost.cmake:842 (_Boost_COMPONENT_DEPENDENCIES)
/Applications/CMake.app/Contents/share/cmake-3.6/Modules/FindBoost.cmake:1395 (_Boost_MISSING_DEPENDENCIES)
CMakeLists.txt:6 (find_package)
Boost version: 1.63.0
Found the following Boost libraries:
thread
CMake Warning at /Applications/CMake.app/Contents/share/cmake-3.6/Modules/FindBoost.cmake:743 (message):
Imported targets not available for Boost version 106300
Call Stack (most recent call first):
/Applications/CMake.app/Contents/share/cmake-3.6/Modules/FindBoost.cmake:842 (_Boost_COMPONENT_DEPENDENCIES)
/Applications/CMake.app/Contents/share/cmake-3.6/Modules/FindBoost.cmake:1395 (_Boost_MISSING_DEPENDENCIES)
CMakeLists.txt:7 (find_package)
Run Code Online (Sandbox Code Playgroud) 我想从形状点创建一个多边形.
from shapely import geometry
p1 = geometry.Point(0,0)
p2 = geometry.Point(1,0)
p3 = geometry.Point(1,1)
p4 = geometry.Point(0,1)
pointList = [p1, p2, p3, p4, p1]
poly = geometry.Polygon(pointList)
Run Code Online (Sandbox Code Playgroud)
给我一个类型错误 TypeError: object of type 'Point' has no len()
如何Polygon
从形状Point
对象中创建?
什么是效用out
参数在某些numpy
功能,如cumsum
或cumprod
或其他数学函数?
如果结果很大,是否有助于使用该out
参数来提高计算时间或内存效率?
该线程提供了有关如何使用它的一些信息.但我想知道我什么时候应该使用它,有什么好处呢?
有没有办法将数组存储在hdf5文件中,这个文件太大而无法在内存中加载?
如果我做这样的事情
f = h5py.File('test.hdf5','w')
f['mydata'] = np.zeros(2**32)
Run Code Online (Sandbox Code Playgroud)
我收到内存错误.
我按照README中的OpenNI安装指南https://github.com/OpenNI/OpenNI.我也安装了libtool和libusb.但是,当我./RedistMaker
在Platform/Linux-x86/CreateRedist下运行时,我收到了这样的错误消息:
PrimeSense OpenNI Redist *
2011-10-12 23:18:46 * *********************************
Taking version... version is 1.3.3.6
Building OpenNI... In file included from ../../../../Source/OpenNI/
XnDump.cpp:25: ../../../../Include/XnDump.h:167: warning: ‘warning’
attribute directive ignored ../../../../Include/XnDump.h:168: warning:
‘warning’ attribute directive ignored ../../../../Include/XnDump.h:
169: warning: ‘warning’ attribute directive ignored ../../../../
Include/XnDump.h:170: warning: ‘warning’ attribute directive
ignored ../../../../Include/XnDump.h:171: warning: ‘warning’ attribute
directive ignored ../../../../Include/XnDump.h:172: warning: ‘warning’
attribute directive ignored In file included from ../../../../Source/
OpenNI/XnDump.cpp:25: ../../../../Include/XnDump.h:167: warning:
‘warning’ attribute directive ignored ../../../../Include/XnDump.h:
168: warning: ‘warning’ …
Run Code Online (Sandbox Code Playgroud) Docstring说:
Polygon.contains
如果几何包含另一个,则返回True,否则返回False
Polygon.within
如果几何在另一个内,则返回True,否则返回False
他们有什么不同?
a
Out[57]:
array([[1, 2],
[3, 4]])
b
Out[58]:
array([[5, 6],
[7, 8]])
In[63]: a[:,-1] + b
Out[63]:
array([[ 7, 10],
[ 9, 12]])
Run Code Online (Sandbox Code Playgroud)
这是行添加.如何将列添加到列中以获取
In [65]: result
Out[65]:
array([[ 7, 8],
[11, 12]])
Run Code Online (Sandbox Code Playgroud)
我不想转置整个数组,添加然后转置回来.还有其他方法吗?
import time
from multiprocessing import Process
def loop(limit):
for i in xrange(limit):
pass
print i
limit = 100000000 #100 million
start = time.time()
for i in xrange(5):
p = Process(target=loop, args=(limit,))
p.start()
p.join()
end = time.time()
print end - start
Run Code Online (Sandbox Code Playgroud)
我尝试运行此代码,这是我得到的输出
99999999
99999999
2.73401999474
99999999
99999999
99999999
Run Code Online (Sandbox Code Playgroud)
而有时
99999999
99999999
3.72434902191
99999999
99999999
99999999
99999999
99999999
Run Code Online (Sandbox Code Playgroud)
在这种情况下,循环函数被调用了 7 次而不是 5 次。为什么会有这种奇怪的行为?
我也对p.join()
声明的作用感到困惑。它是同时结束任何一个进程还是所有进程?
python parallel-processing multiprocessing python-multiprocessing
import h5py
import numpy as np
f = h5py.File('test','w')
f.create_dataset('key1', data = np.array([1,2,3]))
f.create_dataset('key2', data = np.array([4,5,6]))
f.close()
Run Code Online (Sandbox Code Playgroud)
创建名为 test 的文件,并分别在 key1 和 key2 下写入两个数组。
但是,关闭文件对象并重新打开文件会删除以前存储的数据。
f = h5py.File('test','w')
f.create_dataset('key1', data = np.array([1,2,3]))
f.close()
f = h5py.File('test','w')
f.create_dataset('key2', data = np.array([4,5,6]))
f.close()
Run Code Online (Sandbox Code Playgroud)
在这种情况下,仅[4,5,6]
存储在 key 下key2
。
如何重新打开文件并写入新数据而不删除已存储的旧数据?