我最近遇到一个要求,即我有一个.fit()训练有素的scikit-learn SVC分类器实例并且需要.predict()很多实例。
有没有办法.predict()通过任何scikit-learn内置工具仅并行化此方法?
from sklearn import svm
data_train = [[0,2,3],[1,2,3],[4,2,3]]
targets_train = [0,1,0]
clf = svm.SVC(kernel='rbf', degree=3, C=10, gamma=0.3, probability=True)
clf.fit(data_train, targets_train)
# this can be very large (~ a million records)
to_be_predicted = [[1,3,4]]
clf.predict(to_be_predicted)
Run Code Online (Sandbox Code Playgroud)
如果有人确实知道解决方案,如果您能分享它,我会非常高兴。
我目前正在尝试在UMBC Webbase语料库上训练一组Word2Vec向量(大约30GB的文本在400个文件中).
即使在100 GB以上的机器上,我也经常遇到内存不足的情况.我在应用程序本身运行Spark.我尝试稍微调整一下,但我无法对超过10 GB的文本数据执行此操作.我实现的明显瓶颈是先前计算的RDD的并集,即内存不足异常的来源.
也许您有经验可以提出比这更有效的内存实现:
object SparkJobs {
val conf = new SparkConf()
.setAppName("TestApp")
.setMaster("local[*]")
.set("spark.executor.memory", "100g")
.set("spark.rdd.compress", "true")
val sc = new SparkContext(conf)
def trainBasedOnWebBaseFiles(path: String): Unit = {
val folder: File = new File(path)
val files: ParSeq[File] = folder.listFiles(new TxtFileFilter).toIndexedSeq.par
var i = 0;
val props = new Properties();
props.setProperty("annotators", "tokenize, ssplit");
props.setProperty("nthreads","2")
val pipeline = new StanfordCoreNLP(props);
//preprocess files parallel
val training_data_raw: ParSeq[RDD[Seq[String]]] = files.map(file => {
//preprocess line of file
println(file.getName() +"-" + file.getTotalSpace())
val …Run Code Online (Sandbox Code Playgroud) apache-spark ×1
bigdata ×1
concurrency ×1
nlp ×1
python ×1
scala ×1
scikit-learn ×1
word2vec ×1