我正在部署我的 conv-deconv 网络。我的问题是交叉熵在训练时总是 nan 所以求解器没有更新权重。我检查了我的代码一整天,但我不知道我哪里出错了。以下是我的架构:
这是我的交叉熵函数
ys_reshape = tf.reshape(ys,[-1,1])
prediction = tf.reshape(relu4,[-1,1])
cross_entropy = tf.reduce_mean(-(ys_reshape*tf.log(prediction)))
train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
Run Code Online (Sandbox Code Playgroud)
其中 ys 的维度为 [1,500,500,1],ys_reshape 为 [250000,1],relu4 为 [1,500,500,1],预测为 [250000,1]。标签矩阵ys的值是{0,1},这是一个两类密集预测。
如果我打印 train_step 它将显示无。谁能帮我?