小编dar*_*ils的帖子

类型错误:无法使用 dtyped [float64] 数组和 [bool] 类型的标量执行“rand_”

我在 python pandas 中运行了一个命令,如下所示:

q1_fisher_r[(q1_fisher_r['TP53']==1) & q1_fisher_r[(q1_fisher_r['TumorST'].str.contains(':1:'))]]
Run Code Online (Sandbox Code Playgroud)

我收到以下错误:

TypeError: Cannot perform 'rand_' with a dtyped [float64] array and scalar of type [bool]
Run Code Online (Sandbox Code Playgroud)

我尝试使用的解决方案: 错误链接

相应地将代码更改为:

q1_fisher_r[(q1_fisher_r['TumorST'].str.contains(':1:')) & (q1_fisher_r[(q1_fisher_r['TP53']==1)])]
Run Code Online (Sandbox Code Playgroud)

但我仍然遇到相同的错误 TypeError: Cannot perform 'rand_' with a dtyped [float64] array and scalar of type [bool]

python pandas

20
推荐指数
2
解决办法
4万
查看次数

如何使用新列中重叠项目的输出映射两个数据框?

我有两个数据框:

data = {
    'values': ['Cricket', 'Soccer', 'Football', 'Tennis', 'Badminton', 'Chess'],
    'gems': ['A1K, A2M, JA3, AN4', 'B1, A1, Bn2, B3', 'CD1, A1', 'KWS, KQM', 'JP, CVK', 'KF, GF']  
}
df1 = pd.DataFrame(data)
Run Code Online (Sandbox Code Playgroud)

df1

    values       gems
0   Cricket      A1K, A2M, JA3, AN4
1   Soccer       B1, A1, Bn2, B3
2   Football     CD1, A1
3   Tennis       KWS, KQM
4   Badminton    JP, CVK
5   Chess        KF, GF
Run Code Online (Sandbox Code Playgroud)

第二个数据框

data2 = {
    '1C': ['B1', 'K1', 'A1K', 'J1', 'A4'],
    '02C': ['Bn2', 'B3', 'JK', 'ZZ', 'ko'],
    '34C': …
Run Code Online (Sandbox Code Playgroud)

python dataframe pandas

6
推荐指数
3
解决办法
137
查看次数

如何按其他列的条件按行值提取数据框?

我有一个数据框如下:

#values
a=["003C", "003P1", "003P1", "003P1", "004C", "004P1", "004P2", "003C", "003P2", "003P1", "003C", "003P1", "003P2", "003C", "003P1", "004C", "004P2", "001C", "001P1"]
b=["chr18", "chr20", "chr8", "chr8", "chr11", "chr11", "chr11", "chr11", "chr11", "chr11", "chr1", "chr1", "chr1", "chr1", "chr1", "chr11", "chr11", "chr9", "chr9"]
c=[48399,145653,244695,244695,1163940,1163940,1163940,5986513,5986513,5986513,248650751,248650751,248650751,125895,125895,2587895,2587895,14587952,14587952]
d=["C", "G", "C", "C", "C", "C", "C", "G", "G", "G", "T", "T", "T", "T", "T", "C", "C", "T", "T"]
e=["A", "T", "A", "A", "G", "G", "G", "A", "A", "A", "A", "A", "A", "A", "A", "G", "G", "C", "C"]
#Make …
Run Code Online (Sandbox Code Playgroud)

python pandas

2
推荐指数
1
解决办法
86
查看次数

标签 统计

pandas ×3

python ×3

dataframe ×1