我试图使用TensorFlow在Python中实现多元线性回归,但遇到了一些逻辑和实现问题.我的代码抛出以下错误:
Attempting to use uninitialized value Variable
Caused by op u'Variable/read'
Run Code Online (Sandbox Code Playgroud)
理想情况下,weights输出应该是[2, 3]
def hypothesis_function(input_2d_matrix_trainingexamples,
output_matrix_of_trainingexamples,
initial_parameters_of_hypothesis_function,
learning_rate, num_steps):
# calculate num attributes and num examples
number_of_attributes = len(input_2d_matrix_trainingexamples[0])
number_of_trainingexamples = len(input_2d_matrix_trainingexamples)
#Graph inputs
x = []
for i in range(0, number_of_attributes, 1):
x.append(tf.placeholder("float"))
y_input = tf.placeholder("float")
# Create Model and Set Model weights
parameters = []
for i in range(0, number_of_attributes, 1):
parameters.append(
tf.Variable(initial_parameters_of_hypothesis_function[i]))
#Contruct linear model
y = tf.Variable(parameters[0], "float")
for i in range(1, number_of_attributes, …Run Code Online (Sandbox Code Playgroud) 我从简单实现单变量线性梯度下降开始,但不知道将其扩展到多变量随机梯度下降算法?
单变量线性回归
import tensorflow as tf
import numpy as np
# create random data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.5
# Find values for W that compute y_data = W * x_data
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
y = W * x_data
# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
# Before starting, initialize the variables
init = tf.initialize_all_variables()
# Launch the graph.
sess = tf.Session()
sess.run(init)
# Fit …Run Code Online (Sandbox Code Playgroud) 在只有 1 和 0 的数组中,你怎么算数。1s 和 0s 没有比较,然后将其修改为 3s 和 5s 的数组。
我的方法是使用累积数组,使得cumulative[i]=array[i]+cumulative[i-1]。一个数=累积[n]个零数=n-累积[n];这种方法正确吗?或者建议一些其他的方法?我们可以将它转换为 3 和 5 的数组而不进行比较吗?
如何将RGB彩色图像或简单的图像转换为CMY彩色图像并提取每个分量青色(C)洋红色(M)和黄色(Y)?我的方法:-
I=imread('Capture2.PNG');
I3 = I;
I2 =I;
I1 = I;
I1(:,:,2:3)=0;
RED = I1;
I2(:,:,1:2) = 0;
BLUE = I2;
I3(:,:,1:3)=0;
GREEN=I3;
tic;
figure;imshow(RED);
figure;imshow(BLUE);
figure;imshow(GREEN);
c = 1.0-RED;
m = 1.0-GREEN;
y = 1.0-BLUE;
figure;imshow(c);
figure;imshow(m);
figure;imshow(y);
Run Code Online (Sandbox Code Playgroud)