我想保存模型,然后再利用它进行分类我的图片,但遗憾的是我在恢复,我已经保存的模型得到错误.
创建模型的代码:
# Deep Learning
# =============
#
# Assignment 4
# ------------
# In[25]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[37]:
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset'] …Run Code Online (Sandbox Code Playgroud) 我正在构建一个心率监测器,在平滑点之后我想找到图中存在的峰值数量,因此我想使用 scipy.signal.find_peaks_cwt() 方法来找到峰值,但我无法要了解我应该传递哪些参数,因为 scipy.org 中的文档不好。
我在闪光灯打开的情况下拍摄了手指的 10 秒视频,心率可能从 40bpm 到 200bpm 不等。
scipy.signal.find_peaks_cwt(vector, widths, wavelet=None, max_distances=None, gap_thresh=None, min_length=None, min_snr=1, noise_perc=10)
Run Code Online (Sandbox Code Playgroud)
我真的很困惑宽度参数是什么,任何帮助都会很棒。提前致谢
我在读有关docker的文章。我了解到,该平台通过将依赖项和软件组合在一起,有助于消除不同软件生命周期之间的依赖项。
在docker网站上,它写得很轻,我没有明白这一点,因为当它打包了所有依赖项时,它又如何重量很轻?
如果我的系统中有多个使用相同依赖项的容器,即说我们在所有容器中使用相同的外部库,那么是否会为所有容器一次又一次地安装该依赖项?
我是Docker的新手,因此任何帮助对我来说都是很棒的。
我使用以下代码创建了一个模型:
# Deep Learning
# In[25]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[37]:
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, …Run Code Online (Sandbox Code Playgroud)