小编ruc*_*ker的帖子

将因子级别转换为数字

如果那里已经有了答案我道歉...我看了但找不到一个.

我试图将因子矩阵转换为对应于列的每个因子值的数字矩阵.简单吧?然而,当我尝试这样做时,我遇到了各种非常奇怪的问题.

让我解释.这是一个示例数据集:

demodata2 <- matrix(c("A","B","B","C",NA,"A","B","B",NA,"C","A","B",NA,"B",NA,"C","A","B",NA,NA,NA,"B","C","A","B","B",NA,"B","B",NA,"B","B",NA,"C","A",NA), nrow=6, ncol=6)
democolnames <- c("Q","R","S","T","U","W")
colnames(demodata2) <- democolnames
Run Code Online (Sandbox Code Playgroud)

产量:

     Q   R   S   T   U   W  
[1,] "A" "B" NA  NA  "B" "B"
[2,] "B" "B" "B" NA  "B" "B"
[3,] "B" NA  NA  NA  NA  NA 
[4,] "C" "C" "C" "B" "B" "C"
[5,] NA  "A" "A" "C" "B" "A"
[6,] "A" "B" "B" "A" NA  NA 
Run Code Online (Sandbox Code Playgroud)

好.所以我想要的是:

     Q    R    S    T    U    W
1    1    2 <NA> <NA>    1    2
2 …
Run Code Online (Sandbox Code Playgroud)

r matrix na

5
推荐指数
2
解决办法
2539
查看次数

线性回归系数信息作为数据帧或矩阵

我正在尝试创建一个脚本来优化线性回归分析,我真的想对模型输出进行操作,最具体的是Pr(> | t |)值.不幸的是,我不知道如何将模型输出到矩阵或数据表中.

这是一个例子:在下面的代码中,我创建了七列数据,并使用其他六个数据拟合第七列.当我得到模型的摘要时,很明显三个参数比其他三个参数更重要.如果我可以用数字方式访问系数输出,我可以创建一个脚本来删除最不重要的参数并重新运行分析......但是就这样,我手动执行此操作.

做这个的最好方式是什么?

非常感谢您的帮助.

q = matrix( 
c(2,14,-4,1,10,9,41,8,13,2,0,20,3,27,1,10,-1,0,
10,-6,23,6,13,-8,1,15,-7,55,7,14,10,0,20,-3,6,4,20,
-1,5,19,-2,48,10,19,8,8,10,-2,24,8,13,9,8,14,5,7,7,
12,1,0,16,7,27,7,10,-1,1,15,7,31,2,20,-5,10,12,3,57,
0,19,-8,8,11,-4,63,5,11,7,8,10,-7,6,9,10,-7,2,19,8,
51,2,18,3,3,14,4,30), nrow=15, ncol=7, byrow = TRUE)
#
colnames(q) <- c("A","B","C","D","E","F","Z")
#
q <- as.data.frame(q)
#
qmodel <- lm(Z~.,data=q)
#
summary(qmodel)
#
Run Code Online (Sandbox Code Playgroud)

输出:

Call:
lm(formula = Z ~ ., data = q)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.25098 -0.52655 -0.02931  0.62350  1.26649 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.09303    1.51627  -1.380    0.205    
A            0.91161    0.11719   7.779 5.34e-05 ***
B            1.99503    0.09539  20.914 2.87e-08 …
Run Code Online (Sandbox Code Playgroud)

r linear-regression

3
推荐指数
1
解决办法
4187
查看次数

标签 统计

r ×2

linear-regression ×1

matrix ×1

na ×1