我正在尝试使用简单的自动编码器PyTorch.我的数据集由256 x 256 x 3图像组成.我已经构建了一个torch.utils.data.dataloader.DataLoader将图像存储为张量的对象.当我运行autoencoder时,我收到运行时错误:
大小不匹配,m1:[76800 x 256],m2:[784 x 128] atUsers/soumith/minicondabuild3/conda-bld/pytorch_1518371252923/work/torch/lib/TH/generic/THTensorMath.c:1434
这些是我的超参数:
batch_size=100,
learning_rate = 1e-3,
num_epochs = 100
Run Code Online (Sandbox Code Playgroud)
以下是我的自动编码器的架构:
class autoencoder(nn.Module):
def __init__(self):
super(autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(3*256*256, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(True),
nn.Linear(64, 12),
nn.ReLU(True),
nn.Linear(12, 3))
self.decoder = nn.Sequential(
nn.Linear(3, 12),
nn.ReLU(True),
nn.Linear(12, 64),
nn.ReLU(True),
nn.Linear(64, 128),
nn.Linear(128, 3*256*256),
nn.ReLU())
def forward(self, x):
x = self.encoder(x)
#x = self.decoder(x)
return x
Run Code Online (Sandbox Code Playgroud)
这是我用来运行模型的代码:
for epoch in range(num_epochs):
for data in dataloader:
img = …Run Code Online (Sandbox Code Playgroud)