小编alo*_*pex的帖子

rpart中CP表给出的树大小

在R包rpart中,是什么决定了CP表中为决策树提供的树的大小?在下面的示例中,CP表默认仅显示具有1,2和5个节点的树(分别为nsplit = 0,1和4).

library(rpart)   
fit <- rpart(Kyphosis ~ Age + Number + Start, method="class", data=kyphosis)
> printcp(fit) 

Classification tree:
rpart(formula = Kyphosis ~ Age + Number + Start, data = kyphosis, 
method = "class")

Variables actually used in tree construction:
[1] Age   Start

Root node error: 17/81 = 0.20988

n= 81 

        CP nsplit rel error  xerror    xstd
1 0.176471      0   1.00000 1.00000 0.21559
2 0.019608      1   0.82353 0.94118 0.21078
3 0.010000      4   0.76471 0.94118 0.21078
Run Code Online (Sandbox Code Playgroud)

是否有一个固有的规则rpart()来确定要呈现的树木大小?并且是否可以强制printcp()返回所有可能大小的树的交叉验证统计信息,即对于上面的示例,还包括具有3和4个节点的树的行(nsplit …

tree r decision-tree cross-validation rpart

7
推荐指数
1
解决办法
1万
查看次数

标签 统计

cross-validation ×1

decision-tree ×1

r ×1

rpart ×1

tree ×1