我有一个功能来执行cron作业
def add_config_job(sched, job):
module = JOB_METHODS.get(job["type"])
if module is None:
logging.warn("job type %r not supported", job["type"])
return
func = module.cron_job
args = (job,)
name = "%s__%s" % (job["name"], job["id"])
start_date = job.get("start_date")
run_at = job["run_at"]
if isinstance(job["run_at"], dict):
sched.add_cron_job(func, args=args, name=name, start_date=start_date,
**run_at)
elif isinstance(job["run_at"], basestring):
sched.add_date_job(func, args=args, name=name, date=run_at)
else:
logging.warn("unsupported 'run_at' type (%s given)", run_at)
Run Code Online (Sandbox Code Playgroud)
我得到错误,因为错过了几秒钟的工作
2015-05-14_00:00:02.76629 WARNING: Run time of job "Daily VPN Connexion__1 (trigger: cron[day='*', hour='0', minute='0', second='0'], next run at: 2015-05-14 00:00:00)" was missed …Run Code Online (Sandbox Code Playgroud) 我已经浏览了这个网站.从这里我得到了使用cudamallocHost的固定内存提供了比cudamalloc更好的性能.然后我使用两个不同的简单程序并测试执行时间为
使用cudaMallocHost
#include <stdio.h>
#include <cuda.h>
// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] * a[idx];
}
// main routine that executes on the host
int main(void)
{
clock_t start;
start=clock();/* Line 8 */
clock_t finish;
float *a_h, *a_d; // Pointer to host & device arrays
const int N = 100000; // Number of elements in arrays
size_t …Run Code Online (Sandbox Code Playgroud) 我有一个简单的程序,如 demo_use.c
#include "libhello.h"
int main(void) {
hello();
return 0;
}
Run Code Online (Sandbox Code Playgroud)
libhello.h
void hello(void);
Run Code Online (Sandbox Code Playgroud)
libhello.c
#include <stdio.h>
void hello(void) {
printf("Hello, library world.\n");
}
Run Code Online (Sandbox Code Playgroud)
我已经在终端中使用了命令
gcc demo_use.c -o test
Run Code Online (Sandbox Code Playgroud)
错误 体系结构x86_64的未定义符号:“ _ hello”,
引用自:ccZdSQP3.o中的_main
ld:找不到架构x86_64的符号collect2:ld返回1退出状态