import numpy as np
import pandas as pd
import matplotlib.pyplot as pt
data1 = pd.read_csv('stage1_labels.csv')
X = data1.iloc[:, :-1].values
y = data1.iloc[:, 1].values
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
label_X = LabelEncoder()
X[:,0] = label_X.fit_transform(X[:,0])
encoder = OneHotEncoder(categorical_features = [0])
X = encoder.fit_transform(X).toarray()
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train,y_test = train_test_split(X, y, test_size = 0.4, random_state = 0)
#fitting Simple Regression to training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
#predecting the test set results
y_pred = …Run Code Online (Sandbox Code Playgroud) 学习 React 时遇到了一个场景,我想在 React.createElement() 中定义一个“img”标签。我尝试过以下语法,但我确信它是错误的方法:
\nfunction Greeting() {\n return (\n <div>\n <Person />\n <Message />\n </div>\n );\n}\n\nconst Person = () => {\n <h2>Its an Image</h2>;\n\n return React.createElement(\n "img",\n {},\n "https://images-eu.ssl-images-amazon.com/images/I/81l3rZK4lnL._AC_UL200_SR200,200_.jpg"\n );\n};\nRun Code Online (Sandbox Code Playgroud)\n我得到的错误如下:
\nError: img is a void element tag and must neither have `children` nor use `dangerouslySetInnerHTML`.\n\xe2\x96\xb6 15 stack frames were collapsed.\nModule.<anonymous>\nE:/REACT_APP/tutorial/src/index.js:43\n40 | return <p>Follow the white rabbit </p>;\n41 | };\n42 | \n> 43 | ReactDom.render(<Greeting />, document.getElementById("root"));\n44 | \nRun Code Online (Sandbox Code Playgroud)\n请建议,
\n我正在编写一个简单的代码来通过覆盖子类中超类的值来学习Scala中的继承::
class point(xy: Int, ry: Int) {
var x: Int = xy
var y: Int = ry
def move(dx: Int, dy: Int){
x = x + dx
y = y + dy
println (x);
println (y);
}
}
class next(override val xy: Int, override val ry: Int, val tet: Int) extends point(xy,ry){
var r: Int = tet
def move(dx: Int, dy: Int, dz: Int ){
x = x + dx
y = y + dy
r = r + tet …Run Code Online (Sandbox Code Playgroud) 我正在尝试通过 pyspark 中的以下代码将 sql server 表转换为 .csv 格式。
from pyspark import SparkContext
sc = SparkContext("local", "Simple App")
from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)
df = sqlContext.read.format("jdbc").option("url","jdbc:sqlserver://server:port").option("databaseName","database").option("driver","com.microsoft.sqlserver.jdbc.SQLServerDriver").option("dbtable","table").option("user","uid").option("password","pwd").load()
df.registerTempTable("test")
df.write.format("com.databricks.spark.csv").save("full_path")
Run Code Online (Sandbox Code Playgroud)
所以,如果我想转换多个表,我需要编写多个数据帧。所以,为了避免它,我想在数据帧上迭代时为数据库名称和用户的表名采用命令行参数for 循环。
甚至有可能吗?如果是,有人可以指导我如何通过 spark-submit 进行操作吗?
python ×2
apache-spark ×1
csv ×1
matplotlib ×1
numpy ×1
pyspark ×1
react-dom ×1
reactjs ×1
scala ×1
spark-submit ×1