groupby在我的主要转换中,我通过执行 a然后applyInPandas在 Foundry 中运行算法。构建需要很长时间,一种想法是使用哈希分区/分桶来组织文件以防止随机读取和排序。
对于 mcve,我有以下数据集:
def example_df():
return spark.createDataFrame(
[("1","2", 1.0), ("1","3", 2.0), ("2","4", 3.0), ("2","5", 5.0), ("2","2", 10.0)],
("id_1","id_2", "v"))
Run Code Online (Sandbox Code Playgroud)
我想要应用的变换是:
def df1(example_df):
def subtract_mean(pdf):
v = pdf.v
return pdf.assign(v=v - v.mean())
return example_df.groupby("id_1","id_2").applyInPandas(subtract_mean, schema="id_1 string, id_2 string, v double")
Run Code Online (Sandbox Code Playgroud)
当我查看没有分区的原始查询计划时,它看起来如下所示:
物理计划:
Execute FoundrySaveDatasetCommand `ri.foundry.main.transaction.00000059-eb1b-61f4-bdb8-a030ac6baf0a@master`.`ri.foundry.main.dataset.eb664037-fcae-4ce2-b92b-bd103cd504b3`, ErrorIfExists, [id_1, id_2, v], ComputedStatsServiceV2Blocking{_endpointChannelFactory=DialogueChannel@3127a629{channelName=dialogue-nonreloading-ComputedStatsServiceV2Blocking, delegate=com.palantir.dialogue.core.DialogueChannel$Builder$$Lambda$713/0x0000000800807c40@70f51090}, runtime=com.palantir.conjure.java.dialogue.serde.DefaultConjureRuntime@6c67a62a}, com.palantir.foundry.spark.catalog.caching.CachingSchemaService@7d881feb, com.palantir.foundry.spark.catalog.caching.CachingMetadataService@57a1ef9e, com.palantir.foundry.spark.catalog.FoundrySparkResolver@4d38f6f5, com.palantir.foundry.spark.auth.DefaultFoundrySparkAuthSupplier@21103ab4
+- AdaptiveSparkPlan isFinalPlan=true
+- == Final Plan ==
*(3) BasicStats `ri.foundry.main.transaction.00000059-eb1b-61f4-bdb8-a030ac6baf0a@master`.`ri.foundry.main.dataset.eb664037-fcae-4ce2-b92b-bd103cd504b3`
+- FlatMapGroupsInPandas [id_1#487, id_2#488], subtract_mean(id_1#487, id_2#488, v#489), [id_1#497, …Run Code Online (Sandbox Code Playgroud) partitioning apache-spark pyspark palantir-foundry foundry-code-repositories
我想从给定蒙版的图像中提取感兴趣的区域 (ROI),并将其保存在一个调整为 ROI 大小且具有透明背景的新文件中。
例如给定这张图片:

我想得到这个:

这里的解决方案NumPy/OpenCV 2: 如何裁剪非矩形区域?提供全尺寸的输出图像。我怎样才能让它输出 ROI 的矩形大小?
我可以按位and图像和蒙版,但我真的很困惑调整图像大小并将其另存为透明 png 的好方法。