小编CBr*_*uer的帖子

如何将pandas数据帧的第n行作为pandas数据帧提取?

假设Pandas数据框如下所示:

X_test.head(4)
    BoxRatio  Thrust  Velocity  OnBalRun  vwapGain
5     -0.163  -0.817     0.741     1.702     0.218
8      0.000   0.000     0.732     1.798     0.307
11     0.417  -0.298     2.036     4.107     1.793
13     0.054  -0.574     1.323     2.553     1.185
Run Code Online (Sandbox Code Playgroud)

如何将第三行(作为row3)提取为pd数据框?换句话说,row3.shape应该是(1,5)而row3.head()应该是:

 0.417  -0.298     2.036     4.107     1.793
Run Code Online (Sandbox Code Playgroud)

python python-3.x pandas

7
推荐指数
1
解决办法
2万
查看次数

如何绘制渐变填充弧,即彩虹?

以下代码绘制了一个半圆,其中包含从红色到绿色的渐变.这不是我想要的.我期望用渐变绘制宽度为5像素的弧.

任何有助于展示我出错的地方都将不胜感激.

查尔斯

-(void) DrawRainbow {
// Create an arc path
float x = 150.0;
float y = 220.0;
float radius = 75.0;
float startAngle = M_PI;
float endAngle   = 2*M_PI;
bool clockWise = false;
CGMutablePathRef path = CGPathCreateMutable();
CGPathAddArc(path, nil, x, y, radius, startAngle, endAngle, clockWise);

// Setup the gradient
size_t num_locations = 2;
CGFloat locations[2] = { 0.0, 1.0 };
CGFloat components[8] = {
    1.0, 0.0, 0.0, 1.0,   // Start color is red
    0.0, 1.0, 0.0, 1.0 }; …
Run Code Online (Sandbox Code Playgroud)

iphone objective-c ios

6
推荐指数
1
解决办法
2673
查看次数

为什么此ggplot上的颜色错误?

我是ggplot2的新手,所以请怜悯我。

我的第一次尝试产生一个奇怪的结果(至少对我来说很奇怪)。我的可复制R代码是:

library(ggplot2)
iterations = 7
variables = 14
data <- matrix(ncol=variables, nrow=iterations)

data[1,] = c(0,0,0,0,0,0,0,0,10134,10234,10234,10634,12395,12395)
data[2,] = c(18596,18596,18596,18596,19265,19265,19390,19962,19962,19962,19962,20856,20856,21756)
data[3,] = c(7912,11502,12141,12531,12718,12968,13386,17998,19996,20226,20388,20583,20879,21367)
data[4,] = c(0,0,0,0,0,0,0,43300,43500,44700,45100,45100,45200,45200)
data[5,] = c(11909,11909,12802,12802,12802,13202,13307,13808,21508,21508,21508,22008,22008,22608)
data[6,] = c(11622,11622,11622,13802,14002,15203,15437,15437,15437,15437,15554,15554,15755,16955)
data[7,] = c(8626,8626,8626,9158,9158,9158,9458,9458,9458,9458,9458,9458,9558,11438)

df <- data.frame(data)
n_data_rows = nrow(df)

previous_volumes = df[1:(n_data_rows-1),]/1000
todays_volume    = df[n_data_rows,]/1000

time = seq(ncol(df))/6
min_y = min(previous_volumes, todays_volume)
max_y = max(previous_volumes, todays_volume)
ylimit = c(min_y, max_y)
x = seq(nrow(previous_volumes))

# This gives a plot with 6 gray lines and one red line, but no Ledgend …
Run Code Online (Sandbox Code Playgroud)

r ggplot2

3
推荐指数
1
解决办法
4104
查看次数

我们应该如何解释 H2O 预测函数的结果?

我已经训练并存储了一个随机森林二元分类模型。现在我正在尝试使用此模型模拟处理新的(样本外)数据。我的 Python (Anaconda 3.6) 代码是:

import h2o
import pandas as pd
import sys

localH2O = h2o.init(ip = "localhost", port = 54321, max_mem_size = "8G", nthreads = -1)
h2o.remove_all()

model_path = "C:/sm/BottleRockets/rf_model/DRF_model_python_1501621766843_28117";
model = h2o.load_model(model_path)

new_data = h2o.import_file(path="C:/sm/BottleRockets/new_data.csv")
print(new_data.head(10))

predict = model.predict(new_data)  # predict returns a data frame
print(predict.describe())
predicted = predict[0,0]
probability = predict[0,2]  # probability the prediction is a "1"

print('prediction: ', predicted, ', probability: ', probability)
Run Code Online (Sandbox Code Playgroud)

当我运行此代码时,我得到:

>>> import h2o
>>> import pandas as pd
>>> import sys …
Run Code Online (Sandbox Code Playgroud)

python-3.x h2o

3
推荐指数
1
解决办法
3344
查看次数

标签 统计

python-3.x ×2

ggplot2 ×1

h2o ×1

ios ×1

iphone ×1

objective-c ×1

pandas ×1

python ×1

r ×1