使用H2O Python模块AutoML之后,发现XGBoost位于页首横幅的顶部。然后,我想做的是从H2O XGBoost中提取超参数,并将其复制到XGBoost Sklearn API中。但是,这两种方法之间的性能有所不同:
from sklearn import datasets
from sklearn.model_selection import train_test_split, cross_val_predict
from sklearn.metrics import classification_report
import xgboost as xgb
import scikitplot as skplt
import h2o
from h2o.automl import H2OAutoML
import numpy as np
import pandas as pd
h2o.init()
iris = datasets.load_iris()
X = iris.data
y = iris.target
data = pd.DataFrame(np.concatenate([X, y[:,None]], axis=1))
data.columns = iris.feature_names + ['target']
data = data.sample(frac=1)
# data.shape
train_df = data[:120]
test_df = data[120:]
# Import a sample binary outcome train/test …Run Code Online (Sandbox Code Playgroud)