小编B. *_*Sun的帖子

使用H2O中的超参数在Sklearn中重新构建XGBoost可以在Python中提高性能

使用H2O Python模块AutoML之后,发现XGBoost位于页首横幅的顶部。然后,我想做的是从H2O XGBoost中提取超参数,并将其复制到XGBoost Sklearn API中。但是,这两种方法之间的性能有所不同:


from sklearn import datasets
from sklearn.model_selection import train_test_split, cross_val_predict
from sklearn.metrics import classification_report

import xgboost as xgb
import scikitplot as skplt
import h2o
from h2o.automl import H2OAutoML
import numpy as np
import pandas as pd

h2o.init()


iris = datasets.load_iris()
X = iris.data
y = iris.target

data = pd.DataFrame(np.concatenate([X, y[:,None]], axis=1)) 
data.columns = iris.feature_names + ['target']
data = data.sample(frac=1)
# data.shape

train_df = data[:120]
test_df = data[120:]

# Import a sample binary outcome train/test …
Run Code Online (Sandbox Code Playgroud)

python machine-learning scikit-learn h2o xgboost

8
推荐指数
1
解决办法
309
查看次数

标签 统计

h2o ×1

machine-learning ×1

python ×1

scikit-learn ×1

xgboost ×1