我有一个 Keras(顺序)模型,可以在 Tensorflow 1.13 中使用自定义签名定义保存,如下所示:
from tensorflow.saved_model.utils import build_tensor_info
from tensorflow.saved_model.signature_def_utils import predict_signature_def, build_signature_def
model = Sequential() // with some layers
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
score_signature = predict_signature_def(
inputs={'waveform': model.input},
outputs={'scores': model.output})
metadata = build_signature_def(
outputs={'other_variable': build_tensor_info(tf.constant(1234, dtype=tf.int64))})
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
builder.add_meta_graph_and_variables(
sess=sess,
tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={'score': score_signature, 'metadata': metadata})
builder.save()
Run Code Online (Sandbox Code Playgroud)
将模型迁移到 TF2 keras 很酷:),但我不知道如何使用与上述相同的签名来保存模型。我应该使用新的tf.saved_model.save()还是tf.keras.experimental.export_saved_model()?上面的代码在TF2中应该怎么写呢?
关键要求: